On the stability of the asymptotic suction boundary-layer profile

1965 ◽  
Vol 23 (4) ◽  
pp. 715-735 ◽  
Author(s):  
T. H. Hughes ◽  
W. H. Reid

This paper presents a discussion of some aspects of the linear stability problem for the asymptotic suction profile. An exact solution of the inviscid equation is first obtained in terms of the usual hypergeometric function and its analytical continuation. This exact solution provides both a corrected version of an earlier treatment by Freeman and an independent check on the more general method suggested for solving the inviscid equation numerically. Various approximations to the characteristic equation, and hence to the curve of neutral stability, are then considered. In particular, it is found that, in a consistent asymptotic treatment of the related adjoint problem, at least one viscous correction to the singular inviscid solution must be considered. Based on the present results for the adjoint problem, it is suggested that Tollmien's original treatment of the viscous corrections must be slightly modified.

The MHD stability problem for dissipative Couette flow in a narrow gap between corotating, conducting cylinders with an axial magnetic field is solved exactly. Results are presented for an arbitrary magnetic field; in particular, previous results on the zero and infinite magnetic field limits are verified.


1971 ◽  
Vol 47 (1) ◽  
pp. 1-20 ◽  
Author(s):  
K. S. Gage

A unified linear viscous stability theory is developed for a certain class of stratified parallel channel and boundary-layer flows with Prandtl number equal to unity. Results are presented for plane Poiseuille flow and the asymptotic suction boundary-layer profile, which show that the asymptotic behaviour of both branches of the curve of neutral stability has a universal character. For velocity profiles without inflexion points it is found that a mode of instability disappears as η, the local Richardson number evaluated at the critical point, approaches 0.0554 from below. Calculations for Grohne's inflexion-point profile show both major and minor curves of neutral stability for 0 < η [les ] 0.0554; for\[ 0.0554 < \eta < 0.0773 \]there is only a single curve of neutral stability; and, for η > 0.0773, the curves of neutral stability become closed, with complete stabilization being achieved for a value of η of about 0·107.


2013 ◽  
Vol 737 ◽  
pp. 205-231 ◽  
Author(s):  
Duncan R. Hewitt ◽  
Jerome A. Neufeld ◽  
John R. Lister

AbstractConvection in a porous medium at high Rayleigh number $\mathit{Ra}$ exhibits a striking quasisteady columnar structure with a well-defined and $\mathit{Ra}$-dependent horizontal scale. The mechanism that controls this scale is not currently understood. Motivated by this problem, the stability of a density-driven ‘heat-exchanger’ flow in a porous medium is investigated. The dimensionless flow comprises interleaving columns of horizontal wavenumber $k$ and amplitude $\widehat{A}$ that are driven by a steady balance between vertical advection of a background linear density stratification and horizontal diffusion between the columns. Stability is governed by the parameter $A= \widehat{A}\mathit{Ra}/ k$. A Floquet analysis of the linear-stability problem in an unbounded two-dimensional domain shows that the flow is always unstable, and that the marginal-stability curve is independent of $A$. The growth rate of the most unstable mode scales with ${A}^{4/ 9} $ for $A\gg 1$, and the corresponding perturbation takes the form of vertically propagating pulses on the background columns. The physical mechanism behind the instability is investigated by an asymptotic analysis of the linear-stability problem. Direct numerical simulations show that nonlinear evolution of the instability ultimately results in a reduction of the horizontal wavenumber of the background flow. The results of the stability analysis are applied to the columnar flow in a porous Rayleigh–Bénard (Rayleigh–Darcy) cell at high $\mathit{Ra}$, and a balance of the time scales for growth and propagation suggests that the flow is unstable for horizontal wavenumbers $k$ greater than $k\sim {\mathit{Ra}}^{5/ 14} $ as $\mathit{Ra}\rightarrow \infty $. This stability criterion is consistent with hitherto unexplained numerical measurements of $k$ in a Rayleigh–Darcy cell.


1983 ◽  
Vol 105 (1) ◽  
pp. 119-120 ◽  
Author(s):  
S. P. Lin

The linear stability problem of a n-layered liquid film with a solidified liquid-air interface is reviewed. The general formulation is applied to the special case of a two-layered film flow down an inclined plane. A stability condition is given explicitly in terms of the density, viscosity and thickness ratios. Based on this condition it is found that solidification of the free surface may have the effects of stabilizing the interfacial shear waves and destabilizing the gravity-capillary waves associated with top-heavy density stratification.


2005 ◽  
Vol 35 (5) ◽  
pp. 811-825 ◽  
Author(s):  
F. J. Poulin ◽  
G. R. Flierl

Abstract In this article, the effect shelflike topography has on the stability of a jet that flows along the smooth shelf is addressed. The linear stability problem is solved to determine for which nondimensional parameters a shelf can either destabilize or stabilize a jet. These calculations reveal an intricate dependence of growth rate on topography. In particular, the authors determine that retrograde topography (with the shallow water on the left) always stabilizes the jet (in relation to the flat-bottom equivalent), whereas prograde topography (with the shallow water on the right) can either stabilize or destabilize the jet depending on the particular values of the Rossby number and topographic parameters. For Rossby numbers of order 1 and larger, prograde topography is strictly stabilizing. For small Rossby numbers, small-amplitude topography destabilizes whereas large topography stabilizes. The nonlinear evolution of these instabilities is explored to confirm the predictions from the linear theory and, also, to illustrate how stabilization is directly related to fluid transport across the shelf.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Mikhail Modestov

A general method for solving a linear stability problem of an interface with a continuous internal structure is described. Such interfaces or fronts are commonly found in various branches of physics, such as combustion and plasma physics. It extends simplified analysis of an infinitely thin discontinuous front by means of numerical integration along the steady-state solution. Two examples are presented to demonstrate the application of the method for 1D pulsating instability in magnetic deflagration and 2D Darrieus–Landau instability in a laser ablation wave.


Author(s):  
Thomas J. Bridges ◽  
Gianne Derks

For linear systems with a multi-symplectic structure, arising from the linearization of Hamiltonian partial differential equations about a solitary wave, the Evans function can be characterized as the determinant of a matrix, and each entry of this matrix is a restricted symplectic form. This variant of the Evans function is useful for a geometric analysis of the linear stability problem. But, in general, this matrix of two-forms may have branch points at isolated points, shrinking the natural region of analyticity. In this paper, a new construction of the symplectic Evans matrix is presented, which is based on individual vectors but is analytic at the branch points—indeed, maximally analytic. In fact, this result has greater generality than just the symplectic case; it solves the following open problem in the literature: can the Evans function be constructed in a maximally analytic way when individual vectors are used? Although the non-symplectic case will be discussed in passing, the paper will concentrate on the symplectic case, where there are geometric reasons for evaluating the Evans function on individual vectors. This result simplifies and generalizes the multi-symplectic framework for the stability analysis of solitary waves, and some of the implications are discussed.


The ion technique is applied to a variety of experiments in Couette flow: determination of the critical Taylor number; determination of wavenumber and waveform of the vortices; establishment of the laws that the square of the amplitude and the amplification factor both vary as the difference between the Taylor number and the critical Taylor number; and finally certain studies of the growth and decay of vortices as the Taylor number is changed. The experimental data are compared with the results of integration of the exact equations for the linear stability problem by means of a high-speed computer. These theo­retical values were obtained by P. H. Roberts and are presented in an appendix to this paper.


Sign in / Sign up

Export Citation Format

Share Document