scholarly journals A numerical study of the Bénard cell

1971 ◽  
Vol 45 (4) ◽  
pp. 805-829 ◽  
Author(s):  
André Cabelli ◽  
G. de Vahl Davis

When a layer of liquid is heated from below at a rate which exceeds a certain critical value, a two- or three-dimensional motion is generated. This motion arises from the action of buoyancy and surface tension forces, the latter being due to variations in the temperature of the liquid surface.The two-dimensional form of the flow has been studied by a numerical method. It consists of a series of rolls, rotating alternately clockwise and anticlockwise, which are shown to be symmetrical about the dividing streamlines. As well as a detailed description of the motion and temperature of the liquid, and of the effects on these characteristics of variations in the Rayleigh, Marangoni, Prandtl and Biot numbers, a study has been made of the conditions under which the motion first starts, the wavelength of the rolls and the rate of heat transfer across the liquid layer.

Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


1994 ◽  
Vol 116 (2) ◽  
pp. 296-301 ◽  
Author(s):  
S. Hingorani ◽  
C. J. Fahrner ◽  
D. W. Mackowski ◽  
J. S. Gooding ◽  
R. C. Jaeger

Two-dimensional cylindrical and three-dimensional Cartesian thermal spreaders are studied. One of the surfaces is convectively coupled to a uniform environmental temperature while the opposite surface is subjected to a uniform heat flux distribution over a portion of its boundary. The problem is generalized through the introduction of appropriate dimensionless variables, and analytical solutions for the temperature field are presented for each coordinate system. The solutions depend on the usual geometric and heat transfer groups. It is found that, for a range of realistic Biot numbers and a given ratio of the spreader to heater dimensions, a dimensionless spreader thickness exists for which the temperature of the heater reaches a minimum value. Optimal thickness curves are presented for these ranges.


1992 ◽  
Vol 114 (3) ◽  
pp. 589-597 ◽  
Author(s):  
T. Hayase ◽  
J. A. C. Humphrey ◽  
R. Greif

A numerical study has been performed for the flow and heat transfer in the space between a pair of coaxial cylinders with the outer one fixed and the inner one rotating. Of special interest is the case where either one of the cylinders has an axially grooved surface resulting in twelve circumferentially periodic cavities embedded in it. The ends of the cylinder are bounded by flat impermeable walls that are either fixed to the outer cylinder or rotate with the inner one. Such a geometry is common in electric motors where an improved understanding of thermophysical phenomena is essential for analysis and design. Discretized transport equations are solved for two-dimensional and three-dimensional, steady, constant property laminar flow using a second-order accurate finite volume scheme within the context of a SIMPLER-based iterative methodology. The two-dimensional calculations reveal a shear-induced recirculating flow in the cavities. For supercritical values of the Reynolds number, the three-dimensional calculations show how the flow in a cavity interacts with Taylor vortices in the annular space to enhance heat transfer. Relative to coaxial cylinders with smooth surfaces, for the conditions of this study the transport of momentum and heat is raised by a factor of 1.2 in the case of cavities embedded in the inner cylinder and by a factor of 1.1 in the case of cavities embedded in the outer cylinder.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Zheng Yuan ◽  
Jin Jiang ◽  
Jun Zang ◽  
Qihu Sheng ◽  
Ke Sun ◽  
...  

In the array design of the vertical axis wind turbines (VAWT), the wake effect of the upstream VAWT on the downstream VAWT needs to be considered. In order to simulate the velocity distribution of a VAWT wake rapidly, a new two-dimensional numerical method is proposed, which can make the array design easier and faster. In this new approach, the finite vortex method and vortex particle method are combined to simulate the generation and evolution of the vortex, respectively, the fast multipole method (FMM) is used to accelerate the calculation. Based on a characteristic of the VAWT wake, that is, the velocity distribution can be fitted into a power-law function, a new correction model is introduced to correct the three-dimensional effect of the VAWT wake. Finally, the simulation results can be approximated to the published experimental results in the first-order. As a new numerical method to simulate the complex VAWT wake, this paper proves the feasibility of the method and makes a preliminary validation. This method is not used to simulate the complex three-dimensional turbulent evolution but to simulate the velocity distribution quickly and relatively accurately, which meets the requirement for rapid simulation in the preliminary array design.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 327-330
Author(s):  
Li Yang ◽  
Bo Zhang ◽  
Jiří Jaromír Klemeš ◽  
Jie Liu ◽  
Meiyu Song ◽  
...  

Abstract Many researchers numerically investigated U-tube underground heat exchanger using a two-dimensional simplified pipe. However, a simplified model results in large errors compared to the data from construction sites. This research is carried out using a three-dimensional full-size model. A model validation is conducted by comparing with experimental data in summer. This article investigates the effects of fluid velocity and buried depth on the heat exchange rate in a vertical U-tube underground heat exchanger based on fluid–structure coupled simulations. Compared with the results at a flow rate of 0.4 m/s, the results of this research show that the heat transfer per buried depth at 1.0 m/s increases by 123.34%. With the increase of the buried depth from 80 to 140 m, the heat transfer per unit depth decreases by 9.72%.


1978 ◽  
Vol 56 (10) ◽  
pp. 1390-1394
Author(s):  
K. P. Srivastava

An extensive numerical study on specific heat at constant volume (Cv) for ordered and isotopically disordered lattices has been made. Cv at various temperatures for ordered and disordered linear and two-dimensional lattices have been compared and no appreciable difference in Cv between these two structures has been observed. Effect of concentration of light atoms on Cv for three-dimensional isotopically disordered lattices has also been shown.In spite of taking next-nearest-neighbour interaction into account, no substantial change in Cv between the ordered and isotopically disordered linear lattices has been found. It is shown that the low lying modes contribute substantially at low temperatures.


2011 ◽  
Vol 228-229 ◽  
pp. 676-680 ◽  
Author(s):  
Ye Tian ◽  
Xun Liang Liu ◽  
Zhi Wen

A three-dimensional mathematic model is developed for a 100kw single-end recuperative radiant tube and the simulation is performed with the CFD software FLUENT. Also it is used to investigate the effect of distance between combustion chamber exit and inner tube on heat transfer process. The results suggest that the peak value of combustion flame temperature drops along with the increasing of distance, which leads to low NOX discharging. Also radiant tube surface bulk temperature decreases, which causes radiant tube heating performance losses.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


Sign in / Sign up

Export Citation Format

Share Document