Hysteresis and nonlinear detuning in a spatial-resonance phenomenon

1973 ◽  
Vol 61 (2) ◽  
pp. 401-413
Author(s):  
Ian Huntley ◽  
Ronald Smith

The experimental work of Franklin, Price & Williams (1973) shows that for moderately large driving amplitudes there are features of spatial resonance that are not predicted by the model representation of Mahony & Smith (1972). We here derive an alternative model, which remains valid for moderately large driving amplitudes, and we are able to obtain a theoretical description of both hysteresis and nonlinear detuning of the low frequency wave response. An experiment in which surface waves were generated by a sinusoidal pressure field at the free surface (and which corresponds almost exactly to the theoretical problem) was conducted in order to test these predictions.

Author(s):  
Monica J. Holboke ◽  
Robert G. Grant

This paper presents the results of a two-body analysis for a moored ship sheltered by a breakwater in shallow water with and without free surface forcing in the low frequency wave load calculation. The low frequency wave loads are determined by second order interactions from the first order. The free surface forcing term arises from the free surface boundary condition, which is trivial to first order but is not at second order. We demonstrate in the frequency domain the importance of this term in a two-body analysis. Additionally, we show how inaccurate calculations of the off-diagonal terms of the Quadratic Transfer Function can translate to over or under prediction of low frequency wave loads on moored ships sheltered by breakwaters in shallow water. Low frequency wave load accuracy has direct consequence for LNG marine terminal design. Generally, LNG marine terminals are sited in sheltered harbors, however increasingly they are being proposed in offshore locations where they will require protection from persistent waves and swells. Since breakwaters typically cost twice as much as the rest of the marine facilities, it is important to optimize their size, orientation and location. In a previous paper we described this optimization process [1], which identified a key step to be the transforming of waves just offshore the breakwater into wave loads on the moored ships. The ability to do this step accurately is of critical importance because if the loads are too large, the breakwater will be larger and more expensive than necessary and if the loads are too small, the terminal will experience excessive downtime and loss of revenue.


Author(s):  
Charles Monroy ◽  
Guillaume de Hauteclocque ◽  
Xiao-Bo Chen

The low-frequency quadratic transfer function (QTF) is defined as the second-order wave loads occurring at the frequency equal to the difference frequency (ω1 − ω2) of two wave frequencies (ω1, ω2) in bi-chromatic waves of unit amplitude. The exact formulation of the QTF which is recalled here is difficult to implement due to numerical convergence problems mainly related to the evaluation of an arduous free surface integral. This is why several approximations have been used for practical engineering studies. They have been the subject of a detailed review in [5]. Following this work, two closely-related formulations are investigated in this paper. In [2], the classical formulations of QTF are examined by an analysis based on the Taylor development with respect to Δω for Δω ≪ 1 and an expansion of QTF in power of Δω is then obtained. It is shown that the zeroth-order term is a pure real function equal to the drift loads and that the term of order O(Δω) is a pure imaginary function. The second-order low-frequency wave loading of order O(Δω) contains a free-surface integral representing the second-order corrective forcing on the free surface. Since the integrand is of order O(1/R4) with R as the radial coordinate, the free-surface integral converges rapidly with the radial distance. Unlike what has been assumed in previous studies of particular cases, this free-surface contribution is, in general, not negligible for high Δω compared to other components and the complete QTF. Depending whether we use the O(Δω) approximation for the whole QTF or only for this free surface integral, it leads to two different approximations. The first one is called original O(Δω) approximation, because it is on this form that the O(Δω) approximation was first described in [2]. If we use the O(Δω) approximation only for the free surface integral, we call this approximation the practical O(Δω) approximation. It is shown in this paper that the original formulation fails to predict the behaviour of the QTF even for small O(Δω). Comparison for the O(Δω) approximation of the free surface integral is performed against the analytical solution and the exact numerical formulation. The results are improved compared to when we neglect this free surface integral for the range of Δω of interest, but still the agreement with the exact solution is not ideal. A path for further improvement is finally proposed.


1972 ◽  
Vol 53 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Ian Huntley

The phenomenon was observed during experiments in which a beaker containing water was vibrated in one of its bell modes (the inextensional flexural vibrations of the wall). For certain combinations of driving force and frequency, a standing water wave of large amplitude was generated whose peripheral wavenumber might be either zero (i.e. the wave was radially symmetric) or twice that of the bell mode. This relationship between the wavenumbers of the bell mode and water wave, and the fact that the driving frequency was many times that of the water wave, indicated that this was an instance of a general mechanism that has been studied theoretically by Mahony & Smith (1972). For a model situation, allowing for dissipative effects and nonlinear coupling between nearly resonant oscillations at greatly differing frequencies, they derived a relation-ship between the driving force and frequency representing conditions of neutrals tability (i.e. such that the rate of energy transfer from the high frequency to the low frequency oscillations is zero). The aim of the experimental observations reported here was to check this relationship and other predictions of their theory.


2021 ◽  
Vol 9 (12) ◽  
pp. 1317
Author(s):  
Huan Wang ◽  
Erzheng Fang ◽  
Mingze Wu ◽  
Lianjin Hong ◽  
Zongru Li

When an underwater target moves in viscous fluid, it may cause the periodic movement of the surrounding fluid and generate ultra-low-frequency (ULF) gravity waves. The initial domain of the gravitational surface wave propagating above the moving target is named circular wave. This article studies the ULF circular wave generated by underwater oscillating sphere, which will provide basis for underwater long-range target detection. Firstly, the circular wave caused by the sphere oscillation in a finite deep fluid is studied based on the theory of linear potential flow. Meanwhile, the multipole expansion theory is established to solve the circular wave field. Secondly, the interface wave generated by the target oscillation in a two-layer fluid are numerically analyzed by comparison with the free surface fluctuation of a single-layer fluid. The results show that the amplitude of the internal interface displacement (AIID) is smaller than that of the free surface (AFSD). When the sphere is in the lower layer, the layering effect of the fluid has significant influences on the AFSD. Finally, the results of the pool experiment verified that the wave generated by the oscillating sphere is the surface gravity wave. Furthermore, the change trend of the test result is consistent with the simulation result.


2020 ◽  
Vol 75 (6) ◽  
pp. 507-509 ◽  
Author(s):  
Günter Nimtz ◽  
Horst Aichmann

AbstractPresently, nerve pulse propagation is understood to take place by electric action pulses. The theoretical description is given by the Hodgkin-Huxley model. Recently, an alternative model was proclaimed, where signaling is carried out by acoustic solitons. The solitons are built by a local phase transition in the lyotropic liquid crystal (LLC) of a biologic membrane. We argue that the crystal structure arranging hydrogen bonds at the membrane surface do not allow such an acoustic soliton model. The bound water is a component of the LLC and the assumed phase transition represents a negative entropy step.


Author(s):  
B. Elie ◽  
G. Reliquet ◽  
P.-E. Guillerm ◽  
O. Thilleul ◽  
P. Ferrant ◽  
...  

This paper compares numerical and experimental results in the study of the resonance phenomenon which appears between two side-by-side fixed barges for different sea-states. Simulations were performed using SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach and results are compared with experimental data on two fixed barges with different headings and bilges. Numerical results, obtained using the SWENSE approach, are able to predict both the frequency and the magnitude of the RAO functions.


1995 ◽  
Vol 117 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Peter E. Raad ◽  
Shea Chen ◽  
David B. Johnson

A new method of calculating the pressure field in the simulation of two-dimensional, unsteady, incompressible, free surface fluid flow by use of a marker and cell method is presented. A critical feature of the new method is the introduction of a finer mesh of cells in addition to the regular mesh of finite volume cells. The smaller (micro) cells are used only near the free surface, while the regular (macro) cells are used throughout the computational domain. The movement of the free surface is accomplished by the use of massless surface markers, while the discrete representation of the free surface for the purpose of the application of pressure boundary conditions is accomplished by the use of micro cells. In order to exploit the advantages offered by micro cells, a new general equation governing the pressure field is derived. Micro cells also enable the identification and treatment of multiple points on the free surface in a single surface macro cell as well as of points on the free surface that are located in a macro cell that has no empty neighbors. Both of these situations are likely to occur repeatedly in a free surface fluid flow simulation, but neither situation has been explicitly taken into account in previous marker and cell methods. Numerical simulation results obtained both with and without the use of micro cells are compared with each other and with theoretical solutions to demonstrate the capabilities and validity of the new method.


Author(s):  
He Zhang ◽  
Zhihong Zhong ◽  
Rongxin Tang ◽  
Xiaohua Deng ◽  
Haimeng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document