On transition in a pipe. Part 2. The equilibrium puff

1975 ◽  
Vol 69 (2) ◽  
pp. 283-304 ◽  
Author(s):  
I. Wygnanski ◽  
M. Sokolov ◽  
D. Friedman

Conditionally sampled hot-wire measurements were taken in a pipe at low Reynolds numbers (2700 > Re > 2000) corresponding to the onset of turbulence as a result of a large perturbation in the flow. This type of transition gives rise to a turbulent puff which maintains itself indefinitely at around Re = 2200. The structure of puffs was investigated in some detail and was found to be very different from the structure of fully developed turbulent pipe flow. Nevertheless, it is independent of the character of the disturbance which created it. The purpose of the study was to gain some insight into the mechanism of transition in a pipe.

2015 ◽  
Vol 771 ◽  
pp. 743-777 ◽  
Author(s):  
L. Chan ◽  
M. MacDonald ◽  
D. Chung ◽  
N. Hutchins ◽  
A. Ooi

Direct numerical simulations (DNS) are conducted for turbulent flow through pipes with three-dimensional sinusoidal roughnesses explicitly represented by body-conforming grids. The same viscous-scaled roughness geometry is first simulated at a range of different Reynolds numbers to investigate the effects of low Reynolds numbers and low $R_{0}/h$, where $R_{0}$ is the pipe radius and $h$ is the roughness height. Results for the present class of surfaces show that the Hama roughness function ${\rm\Delta}U^{+}$ is only marginally affected by low Reynolds numbers (or low $R_{0}/h$), and observations of outer-layer similarity (or lack thereof) show no signs of sensitivity to Reynolds number. Then, building on this, a systematic approach is taken to isolate the effects of roughness height $h^{+}$ and wavelength ${\it\lambda}^{+}$ in a turbulent wall-bounded flow in both transitionally rough and fully rough regimes. Current findings show that while the effective slope $\mathit{ES}$ (which for the present sinusoidal surfaces is proportional to $h^{+}/{\it\lambda}^{+}$) is an important roughness parameter, the roughness function ${\rm\Delta}U^{+}$ must also depend on some measure of the viscous roughness height. A simplistic linear–log fit clearly illustrates the strong correlation between ${\rm\Delta}U^{+}$ and both the roughness average height $k_{a}^{+}$ (which is related to $h^{+}$) and $\mathit{ES}$ for the surfaces simulated here, consistent with published literature. Various definitions of the virtual origin for rough-wall turbulent pipe flow are investigated and, for the surfaces simulated here, the hydraulic radius of the pipe appears to be the most suitable parameter, and indeed is the only virtual origin that can ever lead to collapse in the total stress. First- and second-order statistics are also analysed and collapses in the outer layer are observed for all cases, including those where the largest roughness height is a substantial proportion of the reference radius (low $R_{0}/h$). These results provide evidence that turbulent pipe flow over the present sinusoidal surfaces adheres to Townsend’s notion of outer-layer similarity, which pertains to statistics of relative motion.


2016 ◽  
Vol 20 (suppl. 1) ◽  
pp. 93-102 ◽  
Author(s):  
Kwonyul Song ◽  
Jovan Jovanovic ◽  
Ahmed Al-Salaymeh ◽  
Cornelia Rauh ◽  
Antonio Delgado

Reverse transition from the turbulent towards the laminar flow regime was investigated experimentally by progressively increasing the pressure up to 400 MPa in a fully developed pipe flow operated with silicone oil as the working fluid. Using hot-wire anemometry, it is shown indirectly that at low Reynolds numbers a rapid increase in pressure modifies the turbulence dynamics owing to the processes which induce the effects caused by fluid compressibility in the region very close to the wall. The experimental results confirm that under such circumstances, the traditional mechanism responsible for self-maintenance of turbulence in wall-bounded flows is altered in such a way as to lead towards a state in which turbulence cannot persist any longer.


2019 ◽  
Vol 874 ◽  
pp. 699-719 ◽  
Author(s):  
Jose M. Lopez ◽  
George H. Choueiri ◽  
Björn Hof

Polymer additives can substantially reduce the drag of turbulent flows and the upper limit, the so-called state of ‘maximum drag reduction’ (MDR), is to a good approximation independent of the type of polymer and solvent used. Until recently, the consensus was that, in this limit, flows are in a marginal state where only a minimal level of turbulence activity persists. Observations in direct numerical simulations at low Reynolds numbers ($Re$) using minimal sized channels appeared to support this view and reported long ‘hibernation’ periods where turbulence is marginalized. In simulations of pipe flow at $Re$ near transition we find that, indeed, with increasing Weissenberg number ($Wi$), turbulence expresses long periods of hibernation if the domain size is small. However, with increasing pipe length, the temporal hibernation continuously alters to spatio-temporal intermittency and here the flow consists of turbulent puffs surrounded by laminar flow. Moreover, upon an increase in $Wi$, the flow fully relaminarizes, in agreement with recent experiments. At even larger $Wi$, a different instability is encountered causing a drag increase towards MDR. Our findings hence link earlier minimal flow unit simulations with recent experiments and confirm that the addition of polymers initially suppresses Newtonian turbulence and leads to a reverse transition. The MDR state on the other hand results at these low$Re$ from a separate instability and the underlying dynamics corresponds to the recently proposed state of elasto-inertial turbulence.


Author(s):  
Christoph Lyko ◽  
Dirk Michaelis ◽  
Dieter Peitsch ◽  
Mirko Dittmar

Low pressure turbines of small and medium sized engines may operate at very low Reynolds numbers. In consequence transition is delayed to an extend where laminar separation, detached transition and reattachment occur. The wakes from upstream blade rows lead to overall high turbulence levels which play a key role in the transition process. Freestream eddies buffeting the laminar boundary layer induce streamwise vortices known as Klebanoff Modes. To investigate this type of flow a flat plate was exposed to a pressure distribution. It is based on the PAK-B suction side and was created by a contoured wall facing the plate. The PAK-B is a Pratt & Whitney design and a Mach number scaled version of a highly aft loaded low pressure turbine airfoil. Due to the latter it suffers from a large separation bubble at low Reynolds numbers. The flow has been intensively investigated by hot-wire anemometry with a very high spatial resolution. This allows obtaining very precise information about the location of characteristic flow areas; for instance the separation and reattachment positions. Based on this information, Tomographic PIV was employed to expose detailed features in specific areas of the flow field. This technique provides the velocity vector information inside a flow volume. It complements hot-wire results, which give a time resolved information but only planar velocity magnitudes. Combining these techniques and comparing their results is therefore an excellent way to raise the physical understanding of the flow behaviour. This has been done using velocity profiles, skin friction coefficients and integral boundary layer parameters. As the 3D-PIV information allows calculation of derived quantities, like the vector field rotation, a picture of the coherent structures can be drawn.


2020 ◽  
Vol 32 (10) ◽  
pp. 103605 ◽  
Author(s):  
Guang Yin ◽  
Muk Chen Ong

The hot-wire technique has been used to measure the regular vortex street pattern behind a cylinder at low Reynolds number. Measurements of mean velocity distribution were made both below and above the critical Reynolds number at which the periodic motion appears. Amplitude and phase measurements gave sufficient information for computation of the instantaneous flow pattern of the vortex system. The important points resulting from the investigation are that (i) the critical Reynolds number at which vortices are shed is 40, (ii) in the range of Reynolds numbers investigated the vortices are not shed directly from the cylinder but appear some distance downstream as an instability of the laminar wake.


AIAA Journal ◽  
1974 ◽  
Vol 12 (9) ◽  
pp. 1279-1281 ◽  
Author(s):  
DENNIS K. McLAUGHLIN ◽  
CHARLES J. McCOLGAN

1992 ◽  
Vol 114 (3) ◽  
pp. 580-589 ◽  
Author(s):  
J. S. Addison ◽  
H. P. Hodson

In turbomachinery, a considerable proportion of the blade surface area can be covered by transitional boundary layers. This means that accurate prediction of the profile loss and boundary layer behavior in general depends on the accurate modeling of the transitional boundary layers, especially at low Reynolds numbers. This paper presents a model for determining the intermittency resulting from the unsteady transition caused by the passage of wakes over a blade surface. The model is founded on work by Emmons (1951) who showed that the intermittency could be calculated from a knowledge of the behavior of randomly formed turbulent spots. The model Is used to calculate the development of the boundary layer on the rotor of a low Reynolds number single-stage turbine. The predictions are compared with experimental results obtained using surface-mounted hot-film anemometers and hot-wire traverses of the rotor midspan boundary layer at two different rotor-stator gaps. The validity and limitations of the model are discussed.


Author(s):  
J. S. Addison ◽  
H. P. Hodson

In turbomachinery, a considerable proportion of the blade surface area can be covered by transitional boundary layers. This means that accurate prediction of the profile loss and boundary layer behaviour in general depends on the accurate modelling of the transitional boundary layers, especially at low Reynolds numbers. This paper presents a model for determining the intermittency resulting from the unsteady transition caused by the passage of wakes over a blade surface. The model is founded on work by Emmons (1951) who showed that the intermittency could be calculated from a knowledge of the behaviour of randomly formed turbulent spots. The model is used to calculate the development of the boundary layer on the rotor of a low Reynolds number single-stage turbine. The predictions are compared with experimental results obtained using surface-mounted hot-film anemometers and hot-wire traverses of the rotor mid-span boundary layer at two different rotor-stator gaps. The validity and limitations of the model are discussed.


Sign in / Sign up

Export Citation Format

Share Document