scholarly journals Dynamics of viscoelastic pipe flow at low Reynolds numbers in the maximum drag reduction limit

2019 ◽  
Vol 874 ◽  
pp. 699-719 ◽  
Author(s):  
Jose M. Lopez ◽  
George H. Choueiri ◽  
Björn Hof

Polymer additives can substantially reduce the drag of turbulent flows and the upper limit, the so-called state of ‘maximum drag reduction’ (MDR), is to a good approximation independent of the type of polymer and solvent used. Until recently, the consensus was that, in this limit, flows are in a marginal state where only a minimal level of turbulence activity persists. Observations in direct numerical simulations at low Reynolds numbers ($Re$) using minimal sized channels appeared to support this view and reported long ‘hibernation’ periods where turbulence is marginalized. In simulations of pipe flow at $Re$ near transition we find that, indeed, with increasing Weissenberg number ($Wi$), turbulence expresses long periods of hibernation if the domain size is small. However, with increasing pipe length, the temporal hibernation continuously alters to spatio-temporal intermittency and here the flow consists of turbulent puffs surrounded by laminar flow. Moreover, upon an increase in $Wi$, the flow fully relaminarizes, in agreement with recent experiments. At even larger $Wi$, a different instability is encountered causing a drag increase towards MDR. Our findings hence link earlier minimal flow unit simulations with recent experiments and confirm that the addition of polymers initially suppresses Newtonian turbulence and leads to a reverse transition. The MDR state on the other hand results at these low$Re$ from a separate instability and the underlying dynamics corresponds to the recently proposed state of elasto-inertial turbulence.

1975 ◽  
Vol 69 (2) ◽  
pp. 283-304 ◽  
Author(s):  
I. Wygnanski ◽  
M. Sokolov ◽  
D. Friedman

Conditionally sampled hot-wire measurements were taken in a pipe at low Reynolds numbers (2700 > Re > 2000) corresponding to the onset of turbulence as a result of a large perturbation in the flow. This type of transition gives rise to a turbulent puff which maintains itself indefinitely at around Re = 2200. The structure of puffs was investigated in some detail and was found to be very different from the structure of fully developed turbulent pipe flow. Nevertheless, it is independent of the character of the disturbance which created it. The purpose of the study was to gain some insight into the mechanism of transition in a pipe.


Author(s):  
Keizo Watanabe ◽  
Satoshi Ogata

Turbulent drag reduction by culture solutions of dry malted rice was investigated in a 2.00mm-inner-diameter pipe flow of length 50 diameters at Reynolds numbers from 500 to 8000. The drag reducing abilities of the solutions were tested by comparing drag reduction effectiveness at different concentrations and culture times in water. Comparisons between polysaccharide biopolymer solutions and culture solutions of dry malted rice revealed that the test solutions exhibited Type B drag reduction, which were roughly parallel to, but displaced upwards from, the Newtonian Prandtl-Ka´rma´n law. The maximum drag reduction ration was about 30% at a Reynolds number of 8,000. It is shown also that the onset point of drag reduction phenomena was Ref = 200.


2015 ◽  
Vol 771 ◽  
pp. 743-777 ◽  
Author(s):  
L. Chan ◽  
M. MacDonald ◽  
D. Chung ◽  
N. Hutchins ◽  
A. Ooi

Direct numerical simulations (DNS) are conducted for turbulent flow through pipes with three-dimensional sinusoidal roughnesses explicitly represented by body-conforming grids. The same viscous-scaled roughness geometry is first simulated at a range of different Reynolds numbers to investigate the effects of low Reynolds numbers and low $R_{0}/h$, where $R_{0}$ is the pipe radius and $h$ is the roughness height. Results for the present class of surfaces show that the Hama roughness function ${\rm\Delta}U^{+}$ is only marginally affected by low Reynolds numbers (or low $R_{0}/h$), and observations of outer-layer similarity (or lack thereof) show no signs of sensitivity to Reynolds number. Then, building on this, a systematic approach is taken to isolate the effects of roughness height $h^{+}$ and wavelength ${\it\lambda}^{+}$ in a turbulent wall-bounded flow in both transitionally rough and fully rough regimes. Current findings show that while the effective slope $\mathit{ES}$ (which for the present sinusoidal surfaces is proportional to $h^{+}/{\it\lambda}^{+}$) is an important roughness parameter, the roughness function ${\rm\Delta}U^{+}$ must also depend on some measure of the viscous roughness height. A simplistic linear–log fit clearly illustrates the strong correlation between ${\rm\Delta}U^{+}$ and both the roughness average height $k_{a}^{+}$ (which is related to $h^{+}$) and $\mathit{ES}$ for the surfaces simulated here, consistent with published literature. Various definitions of the virtual origin for rough-wall turbulent pipe flow are investigated and, for the surfaces simulated here, the hydraulic radius of the pipe appears to be the most suitable parameter, and indeed is the only virtual origin that can ever lead to collapse in the total stress. First- and second-order statistics are also analysed and collapses in the outer layer are observed for all cases, including those where the largest roughness height is a substantial proportion of the reference radius (low $R_{0}/h$). These results provide evidence that turbulent pipe flow over the present sinusoidal surfaces adheres to Townsend’s notion of outer-layer similarity, which pertains to statistics of relative motion.


Author(s):  
Robert R. Hessler

ABSTRACTAn analysis of swimming in living crustaceans is presented in order to elucidate the range of ways this function has been achieved, and to reveal the principles which constrain it. The study focuses on Gnathophausia ingens, a primitive, bathypelagic malacostracan that swims with thoracic exopods and pleopods. These structures consist of a muscular peduncle and one or two flagella that are fringed with setulate setae. The basic motion is rowing with the limb and setal fan extended on the power stroke and flexed on recovery.A survey of other crustaceans shows that rowing with this type of swimming structure dominates throughout, although paddles often replace the flagella. Particularly pervasive is the large relative area of setae, whose effectiveness must stem from the ability to extend and flex passively and from the high drag generated on the power stroke by the setules at low Reynolds numbers.A review of reconstructions of Palaeozoic trilobites and marrellomorphs reveals the likelihood that if swimming was the function of the exites, they operated inefficiently or were employed in other methods as well. Sculling and drag reduction on the recovery stroke through feathering rather than flexion are possible alternatives. The more common occurrence of paddle-like limb shafts and blade-like marginal structures in other Palaeozoic arthropods is also noted.


2020 ◽  
Vol 32 (10) ◽  
pp. 103605 ◽  
Author(s):  
Guang Yin ◽  
Muk Chen Ong

2005 ◽  
Vol 127 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Noe¨l Brunetie`re

A modification of the Elrod and Ng turbulence model is presented. The order of magnitude of the Reynolds number in thin lubricant films varies between 102 and 105. For Reynolds numbers higher than 103, the fluid flow becomes turbulent. It is well accepted in lubrication to use a zero-equation turbulence model of the type developed by Constantinescu (1962, ASME J. Basic Eng., 84(1), pp. 139–151), Ng (1964, ASLE Trans., 7, pp. 311–321), Ng and Pan (1965, ASME J. Basic Eng., 87, pp. 675–688), Elrod and Ng (1967, ASME J. Lubr. Technol., 89, pp. 346–362), or Hirs (1973, ASME J. Lubr. Technol., 95, pp. 137–146). The Elrod and Ng approach is certainly the most efficient for combined pressure and shear flows where the Reynolds number is above 104. This paper proposes a modification of the Elrod and Ng model in order to ensure a good correlation with experimental data obtained with low Reynolds number turbulent flows. The present model, coupled with a scaling factor for taking into account the transition to turbulence, is therefore accurate for all of the typical Reynolds number values recorded in lubrication. The model is then applied to hydrostatic noncontacting face seals, which usually operate at Reynolds numbers varying from 103 to 104. The accuracy of the model is shown for this particular application of radial rotating flow. A special study is made of the transition to turbulence. The results are compared with those obtained using the initial Elrod and Ng model. The axial stiffness coefficient and the stability threshold are significantly affected by the turbulence model.


2016 ◽  
Vol 20 (suppl. 1) ◽  
pp. 93-102 ◽  
Author(s):  
Kwonyul Song ◽  
Jovan Jovanovic ◽  
Ahmed Al-Salaymeh ◽  
Cornelia Rauh ◽  
Antonio Delgado

Reverse transition from the turbulent towards the laminar flow regime was investigated experimentally by progressively increasing the pressure up to 400 MPa in a fully developed pipe flow operated with silicone oil as the working fluid. Using hot-wire anemometry, it is shown indirectly that at low Reynolds numbers a rapid increase in pressure modifies the turbulence dynamics owing to the processes which induce the effects caused by fluid compressibility in the region very close to the wall. The experimental results confirm that under such circumstances, the traditional mechanism responsible for self-maintenance of turbulence in wall-bounded flows is altered in such a way as to lead towards a state in which turbulence cannot persist any longer.


Sign in / Sign up

Export Citation Format

Share Document