Transient combined laminar free convection and radiation in a rectangular enclosure

1976 ◽  
Vol 78 (1) ◽  
pp. 65-85 ◽  
Author(s):  
D. W. Larson ◽  
R. Viskanta

The mass, momentum and energy-transfer equations are solved to determine the response of a rectangular enclosure to a fire or other high-temperature heat source. The effects of non-participating radiation, wall heat conduction, and laminar natural convection are examined. The results indicate that radiation dominates the heat transfer in the enclosure and alters the convective flow patterns significantly. At a dimensionless time of 5·0 the surface of the wall opposite a vertical heated wall has achieved over 99% of the hot-wall temperature when radiation is included but has yet to change from the initial temperature for pure convection in the enclosure. At the same time the air at the centre of the enclosure achieves 33% and 13% of the hot-wall temperature with and without radiation, respectively. For a hot upper wall the convection velocities are not only opposite in direction but an order of magnitude larger when radiation transfer between the walls is included.

2021 ◽  
Vol 503 (2) ◽  
pp. 3081-3088
Author(s):  
V K Dubrovich ◽  
Yu N Eroshenko ◽  
S I Grachev

ABSTRACT We consider a primordial black hole of very high mass, $10^9\!-\!10^{10}\, \mathrm{M}_\odot$, surrounded by the dark matter and bayonic halo at redshifts z ∼ 20 without any local sources of energy release. Such heavy and concentrated objects in the early Universe were previously called ‘cosmological dinosaurs’. Spectral distribution and spatial variation of the brightness in the 21-cm line of atomic hydrogen are calculated with the theory of radiation transfer. It is shown that a narrow and deep absorption arises in the form of the spherical shell around the primordial black hole at the certain radius. The parameters of this shell depend almost exclusively on the mass of the black hole. The angular diameter 18 arcsec of the absorption ring at z ∼ 20 is well within the current technical possibilities of the Square Kilometre Array type telescopes. But the observation of the ring width itself requires an order of magnitude better resolution.


Author(s):  
Arif B. Ozer ◽  
Donald K. Hollingsworth ◽  
Larry. C. Witte

A quenching/diffusion analytical model has been developed for predicting the wall temperature and wall heat flux behind bubbles sliding in a confined narrow channel. The model is based on the concept of a well-mixed liquid region that enhances the heat transfer near the heated wall behind the bubble. Heat transfer in the liquid is treated as a one-dimensional transient conduction process until the flow field recovers back to its undisturbed level prior to bubble passage. The model is compared to experimental heat transfer results obtained in a high-aspect-ratio (1.2×23mm) rectangular, horizontal channel with one wide wall forming a uniform-heat-generation boundary and the other designed for optical access to the flow field. The working fluid was Novec™ 649. A thermochromic liquid crystal coating was applied to the outside of the uniform-heat-generation boundary, so that wall temperature variations could be obtained and heat transfer coefficients and Nusselt numbers could be obtained. The experiments were focused on high inlet subcooling, typically 15–50°C. The model is able to capture the elevated heat transfer rates measured in the channel without the need to consider nucleate boiling from the surface or microlayer evaporation from the sliding bubbles. Surface temperatures and wall heat fluxes were estimated for 17 different experimental conditions using the proposed model. Results agreed with the measured values within ±15% accuracy. The insight gathered from comparing the results of the proposed model to experimental results provides the basis for a better understanding of the physics of subcooled bubbly flow in narrow channels.


1978 ◽  
Vol 100 (2) ◽  
pp. 205-211 ◽  
Author(s):  
L. A. Clomburg

Laminar natural convection in a two-dimensional enclosure with both source (uniform heat flux density) and sink (temperature specified) located on the top horizontal boundary is investigated numerically. Temperature and velocity profiles are presented for a high Prandtl number fluid for length Rayleigh numbers in the range 107 to 109 for length to depth ratios of 1:1 to 4:1. To generalize the results, an order of magnitude analysis is used to determine the dependence of temperature, velocity, and boundary-layer thickness scales on aspect ratio and Rayleigh number. The numerical data are well correlated using these suggested scales. The analysis shows the Nusselt number and the maximum horizontal velocity to depend on the 1/6 and 1/3 powers of the Rayleigh number, independent of aspect ratio.


1983 ◽  
Vol 105 (4) ◽  
pp. 782-788 ◽  
Author(s):  
H. Ozoe ◽  
M. Ohmuro ◽  
A. Mouri ◽  
S. Mishima ◽  
H. Sayama ◽  
...  

The horizontal and vertical velocity profiles near a heated vertical wall of rectangular enclosure were measured for the laminar regime of natural convection with a laser-Doppler anemometer. The horizontal temperature profiles near the heated wall were measured with a thermocouple. An almost perfect two-dimensional mode of flow was confirmed for the central regime of the box. A minimum in the temperature profile between the hot wall and the thermally stratified central core resulted in a downward flow just outside the boundary layer of upward flow, but the central core was stagnant. Visualization of the flow with a phenolphtalein tracer confirmed the two-dimensionality of the flow along the vertical heated wall and revealed a zone of three-dimensional flow in the form of spiral streaklines along the insulated top plate toward the opposing cooled vertical wall. Measurements such as these provide for the first time the basis for a critical test of the accuracy of numerical solutions.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Wenjiang Wu ◽  
Chan Y. Ching

The effect of the top wall temperature on the laminar natural convection in air-filled rectangular cavities driven by a temperature difference across the vertical walls was investigated for three different aspect ratios of 0.5, 1.0, and 2.0. The temperature distributions along the heated vertical wall were measured, and the flow patterns in the cavities were visualized. The experiments were performed for a global Grashof number of approximately 1.8×108 and nondimensional top wall temperatures from 0.52 (insulated) to 1.42. As the top wall was heated, the flow separated from the top wall with an undulating flow region in the corner of the cavity, which resulted in a nonuniformity in the temperature profiles in this region. The location and extent of the undulation in the flow are primarily determined by the top wall temperature and nearly independent of the aspect ratio of the cavity. The local Nusselt number was correlated with the local Rayleigh number for all three cavities in the form of Nu=C⋅Ran, but the values of the constants C and n changed with the aspect ratio.


Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Alessandra Diana

Natural convection in horizontal rectangular channel without or with aluminum foam is experimentally and numerically investigated. In the case with aluminum foam the channel is partially filled. In both cases, the bottom wall of the channel is heated at a uniform heat flux and the upper wall is unheated and it is not thermally insulated to the external ambient. The experiments are performed with working fluid air. Different values of wall heat flux at lower surface are considered in order to obtain some Grashof numbers and different heated wall temperature distributions. Two different aluminum foams are considered in the experimental investigation, one from “M-pore”, with 10 and 30 pore per inch (PPI), and the other one from “ERG”, with 10, 20 and 40 PPI. The numerical simulation is carried out by a simplified two-dimensional model. It is found that the heat transfer is better when the channel is partially filled and the emissivity is low, whereas the heated wall temperature values are higher when the channel is partially filled and the heated bottom plate has high emissivity. The investigation is achieved also by flow visualization which is carried out to identify the main flow shape and development and the transition region along the channel. The visualization of results, both experimental and numerical, grants the description of secondary motions in the channel.


Author(s):  
Wenlong Tian ◽  
Huang Zhang ◽  
Qianfeng Liu ◽  
Guang Hu ◽  
Wen He

Abstract We investigated a single droplet impinging on an inclined heated wall with different inclination angles. A high-speed camera was used to observe this impinging process at 10000 frames / second. The phenomena of the droplet spreading, shrinking, rebounding, boiling, break-up and splashing were observed. The effects of the wall temperature (Tw, 40–262 °C), the Weber number of the droplet (Wed, 0.66–589) and the wall inclination angle (α, 0–45.6°) on the spreading behavior of the droplet after impinging on the wall were analyzed. Energy conservation equation was used to analyze experimental results. The results show that increasing the inclination angle of the wall is beneficial to the forward spreading of the droplet along the wall, but not to the downward spreading. When α > 45.6°, the droplet will break through the flow resistance of the wall and slide down all the time. The increase of the wall temperature and the Weber number of the droplet is beneficial to the backward and forward spreading of the droplet. Increasing α, increasing Tw and decreasing Wed will promote the shrinking of the droplet after spreading. In addition, the experimental phenomenon also shows that the larger the wall inclination and the higher the wall temperature, the easier the droplet will break away from the wall.


Sign in / Sign up

Export Citation Format

Share Document