A turbulent boundary layer disturbed by a cylinder

1978 ◽  
Vol 87 (1) ◽  
pp. 121-141 ◽  
Author(s):  
Eisuke Marumo ◽  
Kenjiro Suzuki ◽  
Takashi Sato

This paper deals with a two-dimensional turbulent boundary layer disturbed by a circular cylinder. The cylinder was placed inside or outside the boundary layer with its axis parallel to the wall and normal to the flow direction. The mean velocity, wall shear stress, longitudinal turbulent intensity, autocorrelations and turbulent length scale were measured and here the relaxation features of the disturbed boundary layer are discussed. The measurements were made for a ratio of the cylinder diameter d to the undisturbed boundary-layer thickness δ0 equal to 0·30 and for three values of the ratio of the height h of the cylinder axis to δ0 equal to 0·222, 0·556 and 1·24.The results show that the near-wall region of the disturbed boundary layer recovers much more quickly than the outer region and that in the case h/δ0 = 0·222 the recovery is faster than in other cases, as reported by Clauser (1956). Moreover, it is found that the fluctuating velocity field recovers more slowly than the mean velocity field, and that the characteristics of the turbulence in the outer region are still close to those in the wake of an isolated cylinder at the last measurement station, although the mean velocity profile has almost completely returned to its natural shape.

1965 ◽  
Vol 22 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. E. Perry ◽  
P. N. Joubert

The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered.§1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert.In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities.


2002 ◽  
Vol 124 (3) ◽  
pp. 664-670 ◽  
Author(s):  
Donald J. Bergstrom ◽  
Nathan A. Kotey ◽  
Mark F. Tachie

Experimental measurements of the mean velocity profile in a canonical turbulent boundary layer are obtained for four different surface roughness conditions, as well as a smooth wall, at moderate Reynolds numbers in a wind tunnel. The mean streamwise velocity component is fitted to a correlation which allows both the strength of the wake, Π, and friction velocity, Uτ, to vary. The results show that the type of surface roughness affects the mean defect profile in the outer region of the turbulent boundary layer, as well as determining the value of the skin friction. The defect profiles normalized by the friction velocity were approximately independent of Reynolds number, while those normalized using the free stream velocity were not. The fact that the outer flow is significantly affected by the specific roughness characteristics at the wall implies that rough wall boundary layers are more complex than the wall similarity hypothesis would allow.


1976 ◽  
Vol 27 (3) ◽  
pp. 217-228 ◽  
Author(s):  
Noor Afzal ◽  
K P Singh

SummaryIn an axisymmetric turbulent boundary layer along a circular cylinder at constant pressure, measurements have been made of mean velocity profile and turbulence characteristics: longitudinal velocity fluctuations, Reynolds shear stress, transverse correlation and spectrum. It has been found that the qualitative behaviour of an axisymmetric turbulent boundary layer is similar to that of a two-dimensional boundary layer in the wall region, where as in the outer region the effects of transverse curvature are observed.


1970 ◽  
Vol 42 (2) ◽  
pp. 349-365 ◽  
Author(s):  
Robert R. Long

An effort is made to understand turbulence in fluid systems like the oceans and atmosphere in which the Richardson number is generally large. Toward this end, a theory is developed for turbulent flow over a flat plate which is moved and cooled in such a way as to produce constant vertical fluxes of momentum and heat. The theory indicates that in a co-ordinate system fixed in the plate the mean velocity increases linearly with heightzabove a turbulent boundary layer and the mean density decreases asz3, so that the Richardson number is large far from the plate. Near the plate, the results reduce to those of Monin & Obukhov.Thecurvatureof the density profile is essential in the formulation of the theory. When the curvature is negative, a volume of fluid, thoroughly mixed by turbulence, will tend to flatten out at a new level well above the original centre of mass, thereby transporting heat downward. When the curvature is positive a mixed volume of fluid will tend to fall a similar distance, again transporting heat downward. A well-mixed volume of fluid will also tend to rise when the density profile is linear, but this rise is negligible on the basis of the Boussinesq approximation. The interchange of fluid of different, mean horizontal speeds in the formation of the turbulent patch transfers momentum. As the mixing in the patch destroys the mean velocity shear locally, kinetic energy is transferred from mean motion to disturbed motion. The turbulence can arise in spite of the high Richardson number because the precise variations of mean density and mean velocity mentioned above permit wave energy to propagate from the turbulent boundary layer to the whole region above the plate. At the levels of reflexion, where the amplitudes become large, wave-breaking and turbulence will tend to develop.The relationship between the curvature of the density profile and the transfer of heat suggests that the density gradient near the level of a point of inflexion of the density curve (in general cases of stratified, shearing flow) will increase locally as time goes on. There will also be a tendency to increase the shear through the action of local wave stresses. If this results in a progressive reduction in Richardson number, an ultimate outbreak of Kelvin–Helmholtz instability will occur. The resulting sporadic turbulence will transfer heat (and momentum) through the level of the inflexion point. This mechanism for the appearance of regions of low Richardson number is offered as a possible explanation for the formation of the surfaces of strong density and velocity differences observed in the oceans and atmosphere, and for the turbulence that appears on these surfaces.


1997 ◽  
Vol 119 (2) ◽  
pp. 277-280 ◽  
Author(s):  
B. A. Singer

Models for the distribution of the wall-pressure under a turbulent boundary layer often estimate the coherence of the cross-spectral density in terms of a product of two coherence functions. One such function describes the coherence as a function of separation distance in the mean-flow direction, the other function describes the coherence in the cross-stream direction. Analysis of data from a large-eddy simulation of a turbulent boundary layer reveals that this approximation dramatically underpredicts the coherence for separation directions that are neither aligned with nor perpendicular to the mean-flow direction. These models fail even when the coherence functions in the directions parallel and perpendicular to the mean flow are known exactly. A new approach for combining the parallel and perpendicular coherence functions is presented. The new approach results in vastly improved approximations for the coherence.


2019 ◽  
Vol 36 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Xiaotong Cui ◽  
Nan Jiang ◽  
Xiaobo Zheng ◽  
Zhanqi Tang

Abstract This study experimentally investigates the impact of a single piezoelectric (PZT) actuator on a turbulent boundary layer from a statistical viewpoint. The working conditions of the actuator include a range of frequencies and amplitudes. The streamwise velocity signals in the turbulent boundary layer flow are measured downstream of the actuator using a hot-wire anemometer. The mean velocity profiles and other basic parameters are reported. Spectra results obtained by discrete wavelet decomposition indicate that the PZT vibration primarily influences the near-wall region. The turbulent intensities at different scales suggest that the actuator redistributes the near-wall turbulent energy. The skewness and flatness distributions show that the actuator effectively alters the sweep events and reduces intermittency at smaller scales. Moreover, under the impact of the PZT actuator, the symmetry of vibration scales’ velocity signals is promoted and the structural composition appears in an orderly manner. Probability distribution function results indicate that perturbation causes the fluctuations in vibration scales and smaller scales with high intensity and low intermittency. Based on the flatness factor, the bursting process is also detected. The vibrations reduce the relative intensities of the burst events, indicating that the streamwise vortices in the buffer layer experience direct interference due to the PZT control.


1966 ◽  
Vol 25 (4) ◽  
pp. 719-735 ◽  
Author(s):  
H. Fiedler ◽  
M. R. Head

An improved version of Corrsin & Kistler's method has been used to measure intermittency in favourable and adverse pressure gradients, and the characteristic parameters of the intermittency have been related to the form parameterHof the mean velocity profiles.It is found that with adverse pressure gradients the centre of intermittency moves outward from the surface while the width of the intermittent zone decreases. The converse is true of favourable pressure gradients, and it seems likely that at sufficiently low values ofHthe flow over the full depth of the layer is only intermittently turbulent.A new method of intermittency measurement is presented which makes use of a photo-electric probe. Smoke is introduced into the boundary layer and illuminated by a narrow beam of parallel light normal to the surface. The photoelectric probe is focused on the illuminated region and a signal is generated when smoke passes through the focal point of the probe lens. Comparison of this signal with the output from a hot-wire at very nearly the same point shows the identity of smoke and turbulence distributions.


1958 ◽  
Vol 3 (4) ◽  
pp. 344-356 ◽  
Author(s):  
A. J. Favre ◽  
J. J. Gaviglio ◽  
R. J. Dumas

This paper describes the results of further experimental investigation of the turbulent boundary layer with zero pressure gradient. Measurements of autocorrelation and of space-time double correlation have been made respectively with single hot-wires and with two hot-wires with the separation vector in any direction. Space-time correlations reach a maximum for some optimum delay. In the case of two points set on a line orthogonal to the plate, the optimum delay Ti is not zero. In the general case it is equal to the corresponding delay Ti, increased by compensating delay for translation with the mean flow. Taylor's hypothesis may be applied to the boundary layer at distances from the wall greater than 3% of the layer thickness. Space-time isocorrelation surfaces obtained with optimum delay have a large aspect ratio in the mean flow direction, even if they are relative to a point close to the wall (0·03δ); the correlations along the mean flow then retain high values on account of the large scale of the turbulence.


1970 ◽  
Vol 41 (2) ◽  
pp. 259-281 ◽  
Author(s):  
James M. Kendall

An experimental study of the interaction of a turbulent boundary layer with a wavy wall was conducted in a wind tunnel. A smooth neoprene rubber sheet comprising a portion of the floor of the tunnel was mechanically deformed into 12 sinusoidal waves which progressed upwind or down at controlled speed. The turbulent layer thickness was a little less than the wavelength. The mean velocity profile was linear on a semi-log plot over a substantial range of vertical height.The wall pressure was observed to be asymmetrical about the wave profile, resulting in a pressure drag. Flow separation was not the cause of the drag. The drag was found to be larger than that predicted by the inviscid wave generation theory. The measurements indicate that the waves strongly modulate the turbulent structure. The phase of the turbulent stresses with respect to the waves varies with wave speed, indicating that the dynamical reaction time of the turbulence is not negligible in comparison with the wave period.


Sign in / Sign up

Export Citation Format

Share Document