On the mechanism of wall turbulence

1982 ◽  
Vol 119 ◽  
pp. 173-217 ◽  
Author(s):  
A. E. Perry ◽  
M. S. Chong

In this paper an attempt is made to formulate a model for the mechanism of wall turbulence that links recent flow-visualization observations with the various quantitative measurements and scaling laws established from anemometry studies. Various mechanisms are proposed, all of which use the concept of the horse-shoe, hairpin or ‘A’ vortex. It is shown that these models give a connection between the mean-velocity distribution, the broad-band turbulence-intensity distributions and the turbulence spectra. Temperature distributions above a heated surface are also considered. Although this aspect of the work is not yet complete, the analysis for this shows promise.

1993 ◽  
Vol 248 ◽  
pp. 513-520 ◽  
Author(s):  
G. I. Barenblatt

The present work consists of two parts. Here in Part 1, a scaling law (incomplete similarity with respect to local Reynolds number based on distance from the wall) is proposed for the mean velocity distribution in developed turbulent shear flow. The proposed scaling law involves a special dependence of the power exponent and multiplicative factor on the flow Reynolds number. It emerges that the universal logarithmic law is closely related to the envelope of a family of power-type curves, each corresponding to a fixed Reynolds number. A skin-friction law, corresponding to the proposed scaling law for the mean velocity distribution, is derived.In Part 2 (Barenblatt & Prostokishin 1993), both the scaling law for the velocity distribution and the corresponding friction law are compared with experimental data.


2016 ◽  
Author(s):  
Jan Bartl ◽  
Lars Sætran

Abstract. This is a summary of the results of the fourth Blind test workshop which was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at NTNU's wind tunnel. A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within Computational Fluid Dynamics (CFD) were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development up until 9 rotor diameters downstream at three different atmospheric inflow conditions. Besides a spatially uniform inflow field of very low turbulence intensity (TI = 0.23 %) as well as high turbulence intensity (TI = 10.0 %), the turbines are exposed to a grid-generated atmospheric shear flow (TI = 10.1 %). Five different research groups contributed with their predictions using a variety of simulation models, ranging from fully resolved Reynolds Averaged Navier Stokes (RANS) models to Large Eddy Simulations (LES). For the three inlet conditions the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. The prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (Improved Delayed Detached Eddy Simulation) model, however, are consistently managing to provide fairly accurate predictions of the wake turbulence.


1953 ◽  
Vol 20 (1) ◽  
pp. 109-114
Author(s):  
S. I. Pai

Abstract The Reynolds equations of motion of turbulent flow of incompressible fluid have been studied for turbulent flow between parallel plates. The number of these equations is finally reduced to two. One of these consists of mean velocity and correlation between transverse and longitudinal turbulent-velocity fluctuations u 1 ′ u 2 ′ ¯ only. The other consists of the mean pressure and transverse turbulent-velocity intensity. Some conclusions about the mean pressure distribution and turbulent fluctuations are drawn. These equations are applied to two special cases: One is Poiseuille flow in which both plates are at rest and the other is Couette flow in which one plate is at rest and the other is moving with constant velocity. The mean velocity distribution and the correlation u 1 ′ u 2 ′ ¯ can be expressed in a form of polynomial of the co-ordinate in the direction perpendicular to the plates, with the ratio of shearing stress on the plate to that of the corresponding laminar flow of the same maximum velocity as a parameter. These expressions hold true all the way across the plates, i.e., both the turbulent region and viscous layer including the laminar sublayer. These expressions for Poiseuille flow have been checked with experimental data of Laufer fairly well. It also shows that the logarithmic mean velocity distribution is not a rigorous solution of Reynolds equations.


2002 ◽  
Vol 461 ◽  
pp. 61-91 ◽  
Author(s):  
A. E. PERRY ◽  
IVAN MARUSIC ◽  
M. B. JONES

A new approach to the classic closure problem for turbulent boundary layers is presented. This involves, first, using the well-known mean-flow scaling laws such as the log law of the wall and the law of the wake of Coles (1956) together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general non-equilibrium case are identified and are used for establishing a framework for closure. Initially closure is achieved here empirically and the potential for achieving closure in the future using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined. Comparisons are made with experiments covering adverse-pressure-gradient flows in relaxing and developing states and flows approaching equilibrium sink flow. Mean velocity profiles, total shear stress and Reynolds stress profiles can be computed for different streamwise stations, given an initial upstream mean velocity profile and the streamwise variation of free-stream velocity. The attached eddy model of Perry & Marusic (1995) can then be utilized, with some refinement, to compute the remaining unknown quantities such as Reynolds normal stresses and associated spectra and cross-power spectra in the fully turbulent part of the flow.


2013 ◽  
Vol 718 ◽  
pp. 1-4 ◽  
Author(s):  
B. J. McKeon

AbstractMarusic et al. (J. Fluid Mech., vol. 716, 2013, R3) show the first clear evidence of universal logarithmic scaling emerging naturally (and simultaneously) in the mean velocity and the intensity of the streamwise velocity fluctuations about that mean in canonical turbulent flows near walls. These observations represent a significant advance in understanding of the behaviour of wall turbulence at high Reynolds number, but perhaps the most exciting implication of the experimental results lies in the agreement with the predictions of such scaling from a model introduced by Townsend (J. Fluid Mech., vol. 11, 1961, pp. 97–120), commonly termed the attached eddy hypothesis. The elegantly simple, yet powerful, study by Marusic et al. should spark further investigation of the behaviour of all fluctuating velocity components at high Reynolds numbers and the outstanding predictions of the attached eddy hypothesis.


Author(s):  
Redha Wahidi ◽  
Walid Chakroun ◽  
Sami Al-Fahad

Turbulent boundary layer flows over a flat plate with multiple transverse square grooves spaced 10 element widths apart were investigated. Mean velocity profiles, turbulence intensity profiles, and the distributions of the skin-friction coefficients (Cf) and the integral parameters are presented for two grooved walls. The two transverse square groove sizes investigated are 5mm and 2.5mm. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient was determined from the gradient of the mean velocity profiles in the viscous sublayer. Distribution of Cf in the first grooved-wall case (5mm) shows that Cf overshoots downstream of the groove and then oscillates within the uncertainty range and never shows the expected undershoot in Cf. The same overshoot is seen in the second grooved-wall case (2.5mm), however, Cf continues to oscillate above the uncertainty range and never returns to the smooth-wall value. The mean velocity profiles clearly represent the behavior of Cf where a downward shift is seen in the Cf overshoot region and no upward shift is seen in these profiles. The results show that the smaller grooves exhibit larger effects on Cf, however, the boundary layer responses to these effects in a slower rate than to those of the larger grooves.


2014 ◽  
Vol 757 ◽  
pp. 498-513 ◽  
Author(s):  
Carlo Zúñiga Zamalloa ◽  
Henry Chi-Hin Ng ◽  
Pinaki Chakraborty ◽  
Gustavo Gioia

AbstractUnlike the classical scaling relations for the mean-velocity profiles of wall-bounded uniform turbulent flows (the law of the wall, the defect law and the log law), which are predicated solely on dimensional analysis and similarity assumptions, scaling relations for the turbulent-energy spectra have been informed by specific models of wall turbulence, notably the attached-eddy hypothesis. In this paper, we use dimensional analysis and similarity assumptions to derive three scaling relations for the turbulent-energy spectra, namely the spectral analogues of the law of the wall, the defect law and the log law. By design, each spectral analogue applies in the same spatial domain as the attendant scaling relation for the mean-velocity profiles: the spectral analogue of the law of the wall in the inner layer, the spectral analogue of the defect law in the outer layer and the spectral analogue of the log law in the overlap layer. In addition, as we are able to show without invoking any model of wall turbulence, each spectral analogue applies in a specific spectral domain (the spectral analogue of the law of the wall in the high-wavenumber spectral domain, where viscosity is active, the spectral analogue of the defect law in the low-wavenumber spectral domain, where viscosity is negligible, and the spectral analogue of the log law in a transitional intermediate-wavenumber spectral domain, which may become sizable only at ultra-high$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau }$), with the implication that there exist model-independent one-to-one links between the spatial domains and the spectral domains. We test the spectral analogues using experimental and computational data on pipe flow and channel flow.


2015 ◽  
Vol 741 ◽  
pp. 475-480
Author(s):  
Na Gao ◽  
Chen Pu ◽  
Bao Chen

2nd order implicit format is implemented in the Navier-Stokes code to deal with instantaneous item unsteady flows. Three simulations are made to testify the method on flow control. First, the external flow fields of synthetic jets are simulated, the mean velocity on the center line, the jet width and velocity distribution are compared well with experimental results. Secondly, the flow fields of synthetic jet in a crossflow are simulated, orifice slot, the mean velocity on the center line and velocity distribution are compared well with experimental results. Finally, the flow control experiments on separation of airfoil are simulated, control methods include steady suction and synthetic jets. Both methods show their ability to favorably effect the flow separation, shortening the length of separation bubble and improving the pressure levels in separation areas in different degrees.


1996 ◽  
Author(s):  
Ralph J. Volino ◽  
Terrence W. Simon

The laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6%) free-stream turbulence intensity. Transition began at a Reynolds number, Rex (based on distance from the leading edge of the test wall), of 3.5×105 and was completed by 4.7×105. The transition was strongly influenced by the presence of stationary, streamwise, Görtler vortices. Transition under similar conditions has been documented in previous studies, but because concave-wall transition tends to be rapid, measurements within the transition zone were sparse. In this study, emphasis is on measurements within the zone of intermittent flow. Twenty-five profiles of mean streamwise velocity, fluctuating streamwise velocity, and intermittency have been acquired at five values of Rex, and five spanwise locations relative to a Görtler vortex. The mean velocity profiles acquired near the vortex downwash sites exhibit inflection points and local minima. These minima, located in the outer part of the boundary layer, provide evidence of a “tilting” of the vortices in the spanwise direction. Profiles of fluctuating velocity and intermittency exhibit peaks near the locations of the minima in the mean velocity profiles. These peaks indicate that turbulence is generated in regions of high shear, which are relatively far from the wall. The transition mechanism in this flow is different from that on flat walls, where turbulence is produced in the near-wall region. The peak intermittency values in the profiles increase with Rex, but do not follow the “universal” distribution observed in most flat-wall, transitional boundary layers. The results have applications whenever strong concave curvature may result in the formation of Görtler vortices in otherwise 2-D flows. Because these cases were run with a low value of free-stream turbulence intensity, the flow is not a replication of a gas turbine flow. However, the results do provide a base case for further work on transition on the pressure side of gas turbine airfoils, where concave curvature effects are combined with the effects of high free-stream turbulence and strong streamwise pressure gradients, for they show the effects of embedded streamwise vorticity in a flow that is free of high-turbulence effects.


Author(s):  
F. N. Krampa-Morlu ◽  
R. Balachandar

The study of the recovery of an open channel boundary flow in the presence of increased freestream turbulence (FST) generated in the wake region of a surface mounted flat plate is presented. Detailed LDA velocity measurements were obtained upstream and downstream of the flat plate, which is 3 mm in thickness and has a thickness-to-chord ratio of 0.12. The chord is placed parallel to the flow direction. The characteristics of the mean velocity, turbulence intensity, and the velocity skewness and flatness factors were investigated. The skin friction was increased while the strength of the boundary layer wake parameter decreased in the wake region. The turbulence intensity profiles in the wake region increasingly deviated significantly from the upstream profile. Generally, the increased FST noticed in the near-wake region was observed to decay with downstream distance. As a result, the mean velocity and turbulence intensity profiles showed a general sense of recovery towards the state of the approaching flow.


Sign in / Sign up

Export Citation Format

Share Document