The dynamics and structure of double-diffusive layers in sidewall-heating experiments

1988 ◽  
Vol 196 ◽  
pp. 135-156 ◽  
Author(s):  
J. Tanny ◽  
A. B. Tsinober

The dynamics and structure of double-diffusive layers were studied experimentally by heating a linear stable solute gradient from a sidewall in a wide tank. The formation and subsequent development of the layers were investigated by various flow-visualization techniques, namely fluorescent dye, fluorescent particles and shadowgraph. Experiments were performed in order to determine the stability diagram of the flow, following in each experiment the phase trajectory of the system in the phase plane of thermal and solute Rayleigh numbers. The experimentally obtained stability diagram appears to be similar to that obtained numerically by Thangam et al. (1981) and by Hart (1971) for a vertical narrow slot and a steady basic flow. It is shown that if the temperature of the sidewall rises slowly to its prescribed value, the thickness of the initial layers, formed at the onset of instability, is a function of the ambient density gradient and fluid properties only. On the other hand, if the wall temperature rises quickly (almost impulsive heating), the thickness of the initial layers is proportional to the imposed temperature difference, provided that the Rayleigh number, based on this difference, is larger than some critical value which is associated with the first merging of the layers. A criterion for the first merging of the initial layers is obtained, and it is suggested that this merging is due to subsequent instability of the system. The subsequent merging process, following the first merging, is not a simple successive doubling of the layer thickness and in each of five nearly identical experiments a different dependence of the average layer thickness on the instantaneous Rayleigh number is obtained. This indicates that the system of layers behaves chaotically after the first merging. The final thickness of the layers depends on the prescribed lateral temperature difference, and the ratio between the final and the initial thickness of the layers is a linear function of the final Rayleigh number. Flow-visualization experiments indicate that the layers consist of vortices with vertical scale of the layer thickness and various horizontal scales.

1999 ◽  
Vol 392 ◽  
pp. 213-232 ◽  
Author(s):  
OLIVER S. KERR ◽  
KIT YEE TANG

A fluid stably stratified by a salinity gradient and enclosed between two vertical boundaries can become unstable when it is subjected to a temperature difference between the walls. The linear stability of such a fluid in a vertical slot is investigated. Errors in earlier results are found, confirming recent results of Young & Rosner (1998). Four different asymptotic regimes on the stability boundary are identified. One of these, the limit of a strong salinity gradient, has previously been analysed. The analyses of the separate asymptotic limits of weak salinity gradient, large temperature difference and small wavenumber are also given. These four cases make up much of the total boundary between stability and instability for double-diffusive instabilities in a vertical slot, and so most of this boundary can be mapped out for general Prandtl numbers and salt/heat diffusivity ratios using these results.


2016 ◽  
Vol 804 ◽  
pp. 370-386 ◽  
Author(s):  
David Goluskin ◽  
Charles R. Doering

We consider Rayleigh–Bénard convection in a layer of fluid between rough no-slip boundaries where the top and bottom boundary heights are functions of the horizontal coordinates with square-integrable gradients. We use the background method to derive an upper bound on the mean heat flux across the layer for all admissible boundary geometries. This flux, normalized by the temperature difference between the boundaries, can grow with the Rayleigh number ($Ra$) no faster than $O(Ra^{1/2})$ as $Ra\rightarrow \infty$. Our analysis yields a family of similar bounds, depending on how various estimates are tuned, but every version depends explicitly on the boundary geometry. In one version the coefficient of the $O(Ra^{1/2})$ leading term is $0.242+2.925\Vert \unicode[STIX]{x1D735}h\Vert ^{2}$, where $\Vert \unicode[STIX]{x1D735}h\Vert ^{2}$ is the mean squared magnitude of the boundary height gradients. Application to a particular geometry is illustrated for sinusoidal boundaries.


2015 ◽  
Vol 9 (2) ◽  
pp. 63-69 ◽  
Author(s):  
Ramesh Chand ◽  
Gian Chand Rana

AbstractDouble diffusive convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field with Soret effect is investigated for more realistic boundary conditions. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries. The normal mode method is used to find linear stability analysis for the fluid layer. Oscillatory convection is ruled out because of the absence of the two opposing buoyancy forces. Graphs have been plotted to find the effects of various parameters on the stationary convection and it is found that magnetic field, solutal Rayleigh number and nanofluid Lewis number stabilizes fluid layer, while Soret effect, Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number destabilize the fluid layer.


2017 ◽  
Vol 95 (3) ◽  
pp. 238-252 ◽  
Author(s):  
T. Armaghani ◽  
Muneer A. Ismael ◽  
Ali J. Chamkha

The present numerical study investigates the analysis of thermodynamic irreversibility generation and the natural convection in inclined partially porous layered cavity filled with a Cu–water nanofluid. The finite difference method with up-wind scheme is used to solve the governing equations. The study is achieved by examining the effects of nanoparticle volume fraction, inclination angle, and the porous layer thickness. Besides, the computations are achieved within the laminar range of the Rayleigh number. The results show that at Ra = 104, a reduction of total entropy generation is recorded with increasing nanoparticle volume fraction when the porous layer thickness is greater than 0.2. Moreover, when Ra is less than 105, the nanoparticle volume fraction increases the heat transfer irreversibility, and improves the overall thermal performance. It is found also that for a low Rayleigh number, the largest porous layer thickness and the highest cavity orientation improve the thermal performance. On the contrary, at high Rayleigh numbers, these parameter ranges give the worst thermal performance.


2016 ◽  
Vol 26 (5) ◽  
pp. 1346-1364 ◽  
Author(s):  
Chahinez Ghernoug ◽  
Mahfoud Djezzar ◽  
Hassane Naji ◽  
Abdelkarim Bouras

Purpose – The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The annulus walls are maintained at uniform temperatures and concentrations so as to induce aiding thermal and mass buoyancy forces within the fluid. For that, this simulation span a moderate range of thermal Rayleigh number (100RaT100,000), Lewis (0.1Le10), buoyancy ratio (0N5) and Prandtl number (Pr=0.71) to examine their effects on flow motion and heat and mass transfers. Design/methodology/approach – A finite volume method in conjunction with the successive under-relaxation algorithm has been developed to solve the bipolar equations. These are written in dimensionless form in terms of vorticity, stream function, temperature and concentration. Beforehand, the implemented computer code has been validated through already published findings in the literature. The isotherms, streamlines and iso-concentrations are exhibited for various values of Rayleigh and Lewis numbers, and buoyancy ratio. In addition, heat and mass transfer rates in the annulus are translated in terms of Nusslet and Sherwood numbers along the enclosure’s sides. Findings – It is observed that, for the range of parameters considered here, the results show that the average Sherwood number increases with, while the average Nusselt number slightly dips as the Lewis number increases. It is also found that, under the convective mode, the local Nusselt number (or Sherwood) increases with the buoyancy ratio. Likewise, according to Lewis number’s value, the flow pattern is either symmetric and stable or asymmetric and random. Besides that, the heat transfer is transiting from a conductive mode to a convective mode with increasing the thermal Rayleigh number, and the flow structure and the rates of heat and mass transfer are significantly influenced by this parameter. Research limitations/implications – The range of the Rayleigh number considered here covers only the laminar case, with some constant parameters, namely the Prandtl number (Pr = 0.71), and the tilt angle (α=90°). The analysis here is only valid for steady, two-dimensional, laminar and aiding flow within an eccentric horizontal cylindrical annulus. This motivates further investigations involving other relevant parameters as N (opposite flows), Ra, Pr, Le, the eccentricity, the tilt angle, etc. Practical implications – An original framework for handling the double-diffusive natural convection within annuli is available, based on the bipolar equations. In addition, the achievement of this work could help researchers design thermal systems supported by annulus passages. Applications of the results can be of value in various arrangements such as storage of liquefied gases, electronic cable cooling systems, nuclear reactors, underground disposal of nuclear wastes, manifolds of solar energy collectors, etc. Originality/value – Given the geometry concerned, the bipolar coordinates have been used to set the inner and outer walls boundary conditions properly without interpolation. In addition, since studies on double-diffusive natural convection in annuli are lacking, the obtained results may be of interest to handle other configurations (e.g., elliptical-shaped speakers) with other boundary conditions.


1978 ◽  
Vol 100 (4) ◽  
pp. 653-658 ◽  
Author(s):  
C. F. Chen

We consider a stably stratified fluid contained between two parallel sloping plates. At t = 0, the lower plate is given a step increase in temperature; a time-dependent convective flow is generated. Stability of such a flow with respect to double-diffusive mechanism is analyzed. The method is the same one used by Chen [6] in treating a similar problem with vertical walls. The predicted critical values of Rayleigh number and wavelength compare favorably with those observed experimentally. No overstability is encountered up to 75 deg of inclination of the heating wall to the vertical. For a horizontal layer, however, instability starts in an overstable mode. The frequency of the overstable mode compares favorably with that predicted by Veronis [7] for a free-free layer.


2006 ◽  
Vol 61 (7-8) ◽  
pp. 335-344 ◽  
Author(s):  
Beer Singh Bhadauria

Linear stability analysis is performed for the onset of thermosolutal convection in a horizontal fluid layer with rigid-rigid boundaries. The temperature field between the walls of the fluid layer consists of two parts: a steady part and a time-dependent periodic part that oscillates with time. Only infinitesimal disturbances are considered. The effect of temperature modulation on the onset of thermosolutal convection has been studied using the Galerkin method and Floquet theory. The critical Rayleigh number is calculated as a function of frequency and amplitude of modulation, Prandtl number, diffusivity ratio and solute Rayleigh number. Stabilizing and destabilizing effects of modulation on the onset of double diffusive convection have been obtained. The effects of the diffusivity ratio and solute Rayleigh number on the stability of the system are also discussed.


1998 ◽  
Vol 368 ◽  
pp. 263-289 ◽  
Author(s):  
M. MAMOU ◽  
P. VASSEUR ◽  
E. BILGEN

The Galerkin and the finite element methods are used to study the onset of the double-diffusive convective regime in a rectangular porous cavity. The two vertical walls of the cavity are subject to constant fluxes of heat and solute while the two horizontal ones are impermeable and adiabatic. The analysis deals with the particular situation where the buoyancy forces induced by the thermal and solutal effects are opposing each other and of equal intensity. For this situation, a steady rest state solution corresponding to a purely diffusive regime is possible. To demonstrate whether the solution is stable or unstable, a linear stability analysis is carried out to describe the oscillatory and the stationary instability in terms of the Lewis number, Le, normalized porosity, ε, and the enclosure aspect ratio, A. Using the Galerkin finite element method, it is shown that there exists a supercritical Rayleigh number, RsupTC, for the onset of the supercritical convection and an overstable Rayleigh number, RoverTC, at which overstability may arise. Furthermore, the overstable regime is shown to exist up to a critical Rayleigh number, RoscTC, at which the transition from the oscillatory to direct mode convection occurs. By using an analytical method based on the parallel flow approximation, the convective heat and mass transfer is studied. It is found that, below the supercritical Rayleigh number, RsupTC, there exists a subcritical Rayleigh number, RsubTC, at which a stable convective solution bifurcates from the rest state through finite-amplitude convection. In the range of the governing parameters considered in this study, a good agreement is observed between the analytical predictions and the finite element solution of the full governing equations. In addition, it is found that, for a given value of the governing parameters, the converged solution can be permanent or oscillatory, depending on the porous-medium porosity value, ε.


Sign in / Sign up

Export Citation Format

Share Document