scholarly journals The turbulent near wake of a flat plate at low Reynolds number

1990 ◽  
Vol 217 ◽  
pp. 93-114 ◽  
Author(s):  
A. Nakayama ◽  
B. Liu

Mean-velocity and turbulence measurements have been made in the turbulent near wake of a flat plate at various Reynolds numbers in order to investigate the low-Reynolds-number effects in this region. The results indicate that the low-Reynolds-number effects are significant enough to partially explain the discrepancies in the existing mean-velocity data. It has been found that, while the Reynolds-number-independent, inner-law similarity of the boundary layers continues to exist, the width of the inner wake that develops within the inner-law region scales with the outer variable. Therefore, the mean velocity near the wake centreline depends on the Reynolds number. It is conjectured that this is due to the influence of the large eddies of the outer layer on the spreading of the inner wake.Measured turbulence quantities indicate that sudden changes occurring just downstream of the trailing edge are independent of the Reynolds number, but the subsequent development of the turbulent stress profiles depends on the Reynolds number. The Reynolds shear stress and the mean-velocity profiles within the inner wake show approximate similarity.

Author(s):  
Afua A. Ampadu-Mintah ◽  
Mark F. Tachie

Low Reynolds number effects on turbulent flows over a backward facing step (BFS) in an open channel were investigated. The Reynolds numbers based on momentum thickness (θ) and step height (h) are in the range 590 ≤ Reθ ≤ 1950 and 950 ≤ Reh ≤ 2900, respectively. The Froude number based on the approach water depth and freestream velocity varied from 0.12 to 0.37. A particle image velocimetry technique was used to measure the velocity field. The flow patterns in the reattachment and redevelopment regions are qualitatively similar for all the three Reynolds numbers studied. The mean velocity profiles in outer coordinates do not exhibit significant Reynolds number effects downstream of the BFS. On the contrary, the turbulence intensities and Reynolds shear stress do not show Reynolds number similarity. As expected, similarity with the upstream profile improves with increasing streamwise distance from the reattachment point. Data obtained in this study were also compared with previous measurements made over backward facing step in a closed channel to study free surface effects. The results showed that deviation of flow over BFS in open channel from flow over BFS in a closed channel is more significant in the immediate vicinity of the step.


2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


2021 ◽  
Author(s):  
Bastav Borah ◽  
Anand Verma ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Vortex shedding phenomenon leads to a number of different features such as flow induced vibrations, fluid mixing, heat transfer and noise generation. With respect to aerodynamic application, the intensity of vortex shedding and the size of vortices play an essential role in the generation of lift and drag forces on an airfoil. The flat plates are known to have a better lift-to-drag ratio than conventional airfoils at low Reynolds number (Re). A better understanding of the shedding behavior will help aerodynamicists to implement flat plates at low Re specific applications such as fixed-wing micro air vehicle (MAV). In the present study, the shedding of vortices in the wake of a flat plate at low incidence has been studied experimentally in a low-speed subsonic wind tunnel at a Re of 5 × 104. The velocity field in the wake of the plate is measured using a hot wire anemometer. These measurements are taken at specific points in the wake across the flow direction and above the suction side of the flat plate. The velocity field is found to oscillate with one dominant frequency of fluctuation. The Strouhal number (St), calculated from this frequency, is computed for different angles of attack (AoA). The shedding frequency of vortices from the trailing edge of the flat plate has a general tendency to increase with AoA. In this paper, the generation and subsequent shedding of leading edge and trailing edge vortices in the wake of a flat plate are discussed.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Paul Ziadé ◽  
Mark A. Feero ◽  
Philippe Lavoie ◽  
Pierre E. Sullivan

The shear layer development for a NACA 0025 airfoil at a low Reynolds number was investigated experimentally and numerically using large eddy simulation (LES). Two angles of attack (AOAs) were considered: 5 deg and 12 deg. Experiments and numerics confirm that two flow regimes are present. The first regime, present for an angle-of-attack of 5 deg, exhibits boundary layer reattachment with formation of a laminar separation bubble. The second regime consists of boundary layer separation without reattachment. Linear stability analysis (LSA) of mean velocity profiles is shown to provide adequate agreement between measured and computed growth rates. The stability equations exhibit significant sensitivity to variations in the base flow. This highlights that caution must be applied when experimental or computational uncertainties are present, particularly when performing comparisons. LSA suggests that the first regime is characterized by high frequency instabilities with low spatial growth, whereas the second regime experiences low frequency instabilities with more rapid growth. Spectral analysis confirms the dominance of a central frequency in the laminar separation region of the shear layer, and the importance of nonlinear interactions with harmonics in the transition process.


Author(s):  
Takuma Katayama ◽  
Shinsuke Mochizuki

The present experiment focuses on the vorticity diffusion in a stronger wall jet managed by a three-dimensional flat plate wing in the outer layer. Measurement of the fluctuating velocities and vorticity correlation has been carried out with 4-wire vorticity probe. The turbulent vorticity diffusion due to the large scale eddies in the outer layer is quantitatively examined by using the 4-wire vorticity probe. Quantitative relationship between vortex structure and Reynolds shear stress is revealed by means of directly measured experimental evidence which explains vorticity diffusion process and influence of the manipulating wing. It is expected that the three-dimensional outer layer manipulator contributes to keep convex profile of the mean velocity, namely, suppression of the turbulent diffusion and entrainment.


2012 ◽  
Vol 702 ◽  
pp. 286-297 ◽  
Author(s):  
S. Wang ◽  
A. M. Ardekani

AbstractSmall planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady forces such as history and added mass forces on the low-Reynolds-number propulsion of small organisms, e.g. Paramecium, is poorly understood. In this paper, we derive the fundamental equation of motion for an organism swimming by means of the surface distortion in a non-uniform background flow field at a low-Reynolds-number regime. We show that the history and added mass forces are important as the product of Reynolds number and Strouhal number increases above unity. Our results for an unsteady squirmer show that unsteady inertial effects can lead to a non-zero mean velocity for the cases with zero streaming parameters, which have zero mean velocity in the absence of inertia.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


Sign in / Sign up

Export Citation Format

Share Document