Self-similar viscous gravity currents: phase-plane formalism

1990 ◽  
Vol 210 ◽  
pp. 155-182 ◽  
Author(s):  
Julio Gratton ◽  
Fernando Minotti

A theoretical model for the spreading of viscous gravity currents over a rigid horizontal surface is derived, based on a lubrication theory approximation. The complete family of self-similar solutions of the governing equations is investigated by means of a phase-plane formalism developed in analogy to that of gas dynamics. The currents are represented by integral curves in the plane of two phase variables, Z and V, which are related to the depth and the average horizontal velocity of the fluid. Each integral curve corresponds to a certain self-similar viscous gravity current satisfying a particular set of initial and/or boundary conditions, and is obtained by solving a first-order ordinary differential equation of the form dV/dZ = f(Z, V), where f is a rational function. All conceivable self-similar currents can thus be obtained. A detailed analysis of the properties of the integral curves is presented, and asymptotic formulae describing the behaviour of the physical quantities near the singularities of the phase plane corresponding to sources, sinks, and current fronts are given. The derivation of self-similar solutions from the formalism is illustrated by several examples which include, in addition to the similarity flows studied by other authors, many other novel ones such as the extension to viscous flows of the classical problem of the breaking of a dam, the flows over plates with borders, as well as others. A self-similar solution of the second kind describing the axisymmetric collapse of a current towards the origin is obtained. The scaling laws for these flows are derived. Steady flows and progressive wave solutions are also studied and their connection to self-similar flows is discussed. The mathematical analogy between viscous gravity currents and other physical phenomena such as nonlinear heat conduction, nonlinear diffusion, and ground water motion is commented on.

2015 ◽  
Vol 778 ◽  
pp. 669-690 ◽  
Author(s):  
Zhong Zheng ◽  
Sangwoo Shin ◽  
Howard A. Stone

We study the propagation of viscous gravity currents along a thin permeable substrate where slow vertical drainage is allowed from the boundary. In particular, we report the effect of this vertical fluid drainage on the second-kind self-similar solutions for the shape of the fluid–fluid interface in three contexts: (i) viscous axisymmetric gravity currents converging towards the centre of a cylindrical container; (ii) viscous gravity currents moving towards the origin in a horizontal Hele-Shaw channel with a power-law varying gap thickness in the horizontal direction; and (iii) viscous gravity currents propagating towards the origin of a porous medium with horizontal permeability and porosity gradients in power-law forms. For each of these cases with vertical leakage, we identify a regime diagram that characterizes whether the front reaches the origin or not; in particular, when the front does not reach the origin, we calculate the final location of the front. We have also conducted laboratory experiments with a cylindrical lock gate to generate a converging viscous gravity current where vertical fluid drainage is allowed from various perforated horizontal substrates. The time-dependent position of the propagating front is captured from the experiments, and the front position is found to agree well with the theoretical and numerical predictions when surface tension effects can be neglected.


2016 ◽  
Vol 801 ◽  
pp. 65-90 ◽  
Author(s):  
Roiy Sayag ◽  
Jerome A. Neufeld

We study the propagation of viscous gravity currents over a thin porous substrate with finite capillary entry pressure. Near the origin, where the current is deep, propagation of the current coincides with leakage through the substrate. Near the nose of the current, where the current is thin and the fluid pressure is below the capillary entry pressure, drainage is absent. Consequently the flow can be characterised by the evolution of drainage and fluid fronts. We analyse this flow using numerical and analytical techniques combined with laboratory-scale experiments. At early times, we find that the position of both fronts evolve as $t^{1/2}$, similar to an axisymmetric gravity current on an impermeable substrate. At later times, the growing effect of drainage inhibits spreading, causing the drainage front to logarithmically approach a steady position. In contrast, the asymptotic propagation of the fluid front is quasi-self-similar, having identical structure to the solution of gravity currents on an impermeable substrate, only with slowly varying fluid flux. We benchmark these theoretical results with laboratory experiments that are consistent with our modelling assumption, but that also highlight the detailed dynamics of drainage inhibited by finite capillary pressure.


2007 ◽  
Vol 584 ◽  
pp. 415-431 ◽  
Author(s):  
DAVID PRITCHARD

We consider the behaviour of a gravity current in a porous medium when the horizontal surface along which it spreads is punctuated either by narrow fractures or by permeable regions of limited extent. We derive steady-state solutions for the current, and show that these form part of a long-time asymptotic description which may also include a self-similar ‘leakage current’ propagating beyond the fractured region with a length proportional to t1/2. We discuss the conditions under which a current can be completely trapped by a permeable region or a series of fractures.


2022 ◽  
Vol 54 (1) ◽  
pp. 27-56
Author(s):  
Zhong Zheng ◽  
Howard A. Stone

Thin film flows, whether driven by gravity, surface tension, or the relaxation of elastic boundaries, occur in many natural and industrial processes. Applications span problems of oil and gas transport in channels to hydraulic fracture, subsurface propagation of pollutants, storage of supercritical CO2 in porous formations, and flow in elastic Hele–Shaw configurations and their relatives. We review the influence of boundaries on the dynamics of thin film flows, with a focus on gravity currents, including the effects of drainage into the substrate, and the role of the boundaries to confine the flow, force its convergence to a focus, or deform, and thus feedback to alter the flow. In particular, we highlight reduced-order models. In many cases, self-similar solutions can be determined and describe the behaviors in canonical problems at different timescales and length scales, including self-similar solutions of both the first and second kind. Additionally, the time transitions between different solutions are summarized. Where possible, remarks about various applications are provided.


2002 ◽  
Vol 464 ◽  
pp. 251-278 ◽  
Author(s):  
STEVEN J. LENTZ ◽  
KARL R. HELFRICH

The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g′, Coriolis frequency f, and bottom slope α. The nose propagation speed is cp ∼ cw/ (1 + cw/cα) and the width of the buoyant gravity current is Wp ∼ cw/ f(1 + cw/cα), where cw = (2Qg′ f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and cα = αg/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/cα, which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/cα → 0) or approaches the slope-controlled limit (cw/cα → ∞). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/cα = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.


2011 ◽  
Vol 678 ◽  
pp. 248-270 ◽  
Author(s):  
MADELEINE J. GOLDING ◽  
JEROME A. NEUFELD ◽  
MARC A. HESSE ◽  
HERBERT E. HUPPERT

We develop a model describing the buoyancy-driven propagation of two-phase gravity currents, motivated by problems in groundwater hydrology and geological storage of carbon dioxide (CO2). In these settings, fluid invades a porous medium saturated with an immiscible second fluid of different density and viscosity. The action of capillary forces in the porous medium results in spatial variations of the saturation of the two fluids. Here, we consider the propagation of fluid in a semi-infinite porous medium across a horizontal, impermeable boundary. In such systems, once the aspect ratio is large, fluid flow is mainly horizontal and the local saturation is determined by the vertical balance between capillary and gravitational forces. Gradients in the hydrostatic pressure along the current drive fluid flow in proportion to the saturation-dependent relative permeabilities, thus determining the shape and dynamics of two-phase currents. The resulting two-phase gravity current model is attractive because the formalism captures the essential macroscopic physics of multiphase flow in porous media. Residual trapping of CO2 by capillary forces is one of the key mechanisms that can permanently immobilize CO2 in the societally important example of geological CO2 sequestration. The magnitude of residual trapping is set by the areal extent and saturation distribution within the current, both of which are predicted by the two-phase gravity current model. Hence the magnitude of residual trapping during the post-injection buoyant rise of CO2 can be estimated quantitatively. We show that residual trapping increases in the presence of a capillary fringe, despite the decrease in average saturation.


2014 ◽  
Vol 747 ◽  
pp. 218-246 ◽  
Author(s):  
Zhong Zheng ◽  
Ivan C. Christov ◽  
Howard A. Stone

AbstractWe report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b) a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.


2015 ◽  
Vol 766 ◽  
pp. 626-655 ◽  
Author(s):  
Katarzyna N. Kowal ◽  
M. Grae Worster

AbstractWe present a theoretical and experimental study of viscous gravity currents lubricated by another viscous fluid from below. We use lubrication theory to model both layers as Newtonian fluids spreading under their own weight in two-dimensional and axisymmetric settings over a smooth rigid horizontal surface and consider the limit in which vertical shear provides the dominant resistance to the flow in both layers. There are contributions from Poiseuille-like flow driven by buoyancy and Couette-like flow driven by viscous coupling between the layers. The flow is self-similar if both fluids are released simultaneously, and exhibits initial transient behaviour when there is a delay between the initiation of flow in the two layers. We solve for both situations and show that the latter converges towards self-similarity at late times. The flow depends on three key dimensionless parameters relating the relative dynamic viscosities, input fluxes and density differences between the two layers. Provided the density difference between the two layers is bounded away from zero, we find an asymptotic solution in which the front of the lubricant is driven by its own gravitational spreading. There is a singular limit of equal densities in which the lubricant no longer spreads under its own weight in the vicinity of its nose and ends abruptly with a non-zero thickness there. We explore various regimes, from thin lubricating layers underneath a more viscous current to thin surface films coating an underlying more viscous current and find that although a thin film does not greatly influence the more viscous current if it forms a surface coating, it begins to cause interesting dynamics if it lubricates the more viscous current from below. We find experimentally that a lubricated gravity current is prone to a fingering instability.


2017 ◽  
Vol 817 ◽  
pp. 514-559 ◽  
Author(s):  
Ying Liu ◽  
Zhong Zheng ◽  
Howard A. Stone

The drainage of a viscous gravity current into a deep porous medium driven by both the gravitational and capillary forces is considered in two steps. We first study the one-dimensional case where a layer of fluid drains vertically into an infinitely deep porous medium. We determine a transition from the capillary-driven regime to the gravity-driven regime as time proceeds. Second, we solve the coupled spreading and drainage problem. There are no self-similar solutions of the problem for the entire time period, so asymptotic analyses are developed for the height, depth and front location in both the early-time and the late-time periods. In addition, we present numerical results of the governing partial differential equations, which agree well with the self-similar solutions in the appropriate asymptotic limits.


Sign in / Sign up

Export Citation Format

Share Document