scholarly journals Vortex ring bubbles

1991 ◽  
Vol 224 ◽  
pp. 177-196 ◽  
Author(s):  
T. S. Lundgren ◽  
N. N. Mansour

Toroidal bubbles with circulation are studied numerically and by means of a physically motivated model equation. Two series of computations are performed by a boundary-integral method. One set shows the starting motion of an initially spherical bubble as a gravitationally driven liquid jet penetrates through the bubble from below causing a toroidal geometry to develop. The jet becomes broader as surface tension increases and fails to penetrate if surface tension is too large. The dimensionless circulation that develops is not very dependent on the surface tension. The second series of computations starts from a toroidal geometry, with circulation determined from the earlier series, and follows the motion of the rising and spreading vortex ring. Some modifications to the boundary-integral formulation were devised to handle the multiply connected geometry. The computations uncovered some unexpected rapid oscillations of the ring radius. These oscillations and the spreading of the ring are explained by the model equation which provides a more general description of vortex ring bubbles than previously available.

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Alex Doak ◽  
Jean-Marc Vanden-Broeck

AbstractThis paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge. Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral equation concerning only boundary values is derived. This integral equation is solved numerically. The second method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed later. Good agreement between the two numerical methods and the exact free streamline solution provides a check on the numerical schemes.


1998 ◽  
Vol 356 ◽  
pp. 93-124 ◽  
Author(s):  
HARRIS WONG ◽  
DAVID RUMSCHITZKI ◽  
CHARLES MALDARELLI

The expansion and contraction of a bubble pinned at a submerged tube tip and driven by constant gas flow rate Q are studied both theoretically and experimentally for Reynolds number Re[Lt ]1. Bubble shape, gas pressure, surface velocities, and extrapolated detached bubble volume are determined by a boundary integral method for various Bond (Bo=ρga2/σ) and capillary (Ca=μQ/σa2) numbers, where a is the capillary radius, ρ and μ are the liquid density and viscosity, σ is the surface tension, and g is the gravitational acceleration.Bubble expansion from a flat interface to near detachment is simulated for a full range of Ca (0.01–100) and Bo (0.01–0.5). The maximum gas pressure is found to vary almost linearly with Ca for 0.01[les ]Ca[les ]100. This correlation allows the maximum bubble pressure method for measuring dynamic surface tension to be extended to viscous liquids. Simulated detached bubble volumes approach static values for Ca[Lt ]1, and asymptote as Q3/4 for Ca[Gt ]1, in agreement with analytic predictions. In the limit Ca→0, two singular time domains are identified near the beginning and the end of bubble growth during which viscous and capillary forces become comparable.Expansion and contraction experiments were conducted using a viscous silicone oil. Digitized video images of deforming bubbles compare well with numerical solutions. It is observed that a bubble contracting at high Ca snaps off.


1995 ◽  
Vol 05 (07) ◽  
pp. 923-933
Author(s):  
A. PIACENTINI

The effect of the curvature is usually neglected in the mathematical models of bubble collapse. For bubbles of sufficiently small radius such effect becomes of relevant interest. A linear boundary element method (B.E.M.) with a cubic spline approximation of the domain that takes the surface tension into account is presented.


2016 ◽  
Vol 42 ◽  
pp. 1660157
Author(s):  
SHUAI LI ◽  
SHI-PING WANG ◽  
A-MAN ZHANG

The dynamics of a toroidal bubble splitting near a rigid wall in an inviscid incompressible fluid is studied in this paper. The boundary integral method is adopted to simulate the bubble motion. After the jet impact, the vortex ring model is used to handle the discontinued potential of the toroidal bubble. When the toroidal bubble is splitting, topology changes are made tear the bubble apart. Then, the vortex ring model is extended to multiple vortex rings to simulate the interaction between two toroidal bubbles. A typical case is discussed in this study. Besides, the velocity fields and pressure contours surrounding the bubble are used to illustrate the numerical results. An annular high pressure region is generated at the splitting location, and the maximum pressure may be much higher than the jet impact. More splits may happen after the first split.


1998 ◽  
Vol 357 ◽  
pp. 29-57 ◽  
Author(s):  
C. POZRIKIDIS

Numerical studies are performed addressing the development of regions of high curvature and the spontaneous occurrence of cusped interfacial shapes in two-dimensional and axisymmetric Stokes flow. In the numerical simulations, the velocity field is computed using a boundary-integral method, and the evolution of the concentration of an insoluble surfactant over an evolving interface is computed using an implicit finite-volume method. Three configurations are considered in detail, and the results are used to elucidate three different aspects of cusp formation. In the first series, the deformation of a two-dimensional bubble immersed in a family of straining flows devised by Antanovskii, and of an axisymmetric bubble immersed in an analogous family of flows devised by Sherwood, are examined. The numerical results indicate that highly elongated and cusped two-dimensional shapes, and pointed or cusped axisymmetric shapes, are unstable and should not be expected to occur in practice. In the second series of studies, the role of an insoluble surfactant on the transient deformation of bubbles subject to the Antanovskii or Sherwood flow is investigated. Under certain conditions, the reduced surface tension at the tips raises the local curvature to high values and causes the ejection of a sheet or column of gas by means of tip streaming. In the third series of studies, the coalescence of a polygonal formation of five viscous columns of a fluid placed in an arrangement that differs only slightly from one proposed recently by Richardson is examined. The numerical results confirm Richardson's predictions that transient cusps may occur at a finite time in the presence of surface tension. The underlying physical mechanism is discussed on the basis of reversibility of surface-driven Stokes flow and with reference to the regularity of the motion driven by negative surface tension. Replacing the inviscid ambient gas with a slightly viscous fluid whose viscosity is as low as one hundredth the viscosity of the cylinders suppresses the cusp formation.


1999 ◽  
Vol 380 ◽  
pp. 339-361 ◽  
Author(s):  
R. P. TONG ◽  
W. P. SCHIFFERS ◽  
S. J. SHAW ◽  
J. R. BLAKE ◽  
D. C. EMMONY

Vapour cavities in liquid flows have long been associated with cavitation damage to nearby solid surfaces and it is thought that the final stage of collapse, when a high- speed liquid jet threads the cavity, plays a vital role in this process. The present study investigates this aspect of the motion of laser-generated cavities in a quiescent liquid when the distance (or stand-off) of the point of inception from a rigid boundary is between 0.8 and 1.2 times the maximum radius of the cavity. Numerical simulations using a boundary integral method with an incompressible liquid impact model provide a framework for the interpretation of the experimental results. It is observed that, within the given interval of the stand-off parameter, the peak pressures measured on the boundary at the first collapse of a cavity attain a local minimum, while at the same time there is an increase in the duration of the pressure pulse. This contrasts with a monotonic increase in the peak pressures as the stand-off is reduced, when the cavity inception point is outside the stated interval. This phenomenon is shown to be due to a splash effect which follows the impact of the liquid jet. Three cases are chosen to typify the splash interaction with the free surface of the collapsing cavity: (i) surface reconnection around the liquid jet; (ii) splash impact at the base of the liquid jet; (iii) thin film splash. Hydrodynamic pressures generated following splash impact are found to be much greater than those produced by the jet impact. The combination of splash impact and the emission of shock waves, together with the subsequent re-expansion, drives the flow around the toroidal cavity producing a distinctive double pressure peak.


1998 ◽  
Vol 369 ◽  
pp. 253-272 ◽  
Author(s):  
WILLIAM W. SCHULTZ ◽  
JEAN-MARC VANDEN-BROECK ◽  
LEI JIANG ◽  
MARC PERLIN

We calculate spatially and temporally periodic standing waves using a spectral boundary integral method combined with Newton iteration. When surface tension is neglected, the non-monotonic behaviour of global wave properties agrees with previous computations by Mercer & Roberts (1992). New accurate results near the limiting form of gravity waves are obtained by using a non-uniform node distribution. It is shown that the crest angle is smaller than 90° at the largest calculated crest curvature. When a small amount of surface tension is included, the crest form is changed significantly. It is necessary to include surface tension to numerically reproduce the steep standing waves in Taylor's (1953) experiments. Faraday-wave experiments in a large-aspect-ratio rectangular container agree with our computations. This is the first time such high-amplitude, periodic waves appear to have been observed in laboratory conditions. Ripple formation and temporal symmetry breaking in the experiments are discussed.


1988 ◽  
Vol 188 ◽  
pp. 275-300 ◽  
Author(s):  
C. Pozrikidis

The creeping flow of a liquid film along an inclined periodic wall of arbitrary geometry is considered. The problem is formulated using the boundary-integral method for Stokes flow. This method is extended to two-dimensional flows involving free surfaces, and is implemented in an iterative numerical procedure. Detailed calculations for flow along a sinusoidal wall are perfomed. The free-surface profile is studied as a function of flow rate, inclination angle, wave amplitude, and surface tension, and is compared with previous asymptotic solutions. The results include streamline patterns, velocity profiles and wall-shear-stress distributions, and establish criteria for flow reversal. For specified wall geometry, the asymptotic behaviour for very small flow rates is shown to be a strong function of surface tension. It is demonstrated that these results are valid in a qualitative sense for general wall geometries. The analogy between gravity-driven flow and the flow of a liquid layer on a rotating disk (spin coating) is also discussed.


Sign in / Sign up

Export Citation Format

Share Document