Three-dimensional flow over two spheres placed side by side

1993 ◽  
Vol 246 ◽  
pp. 465-488 ◽  
Author(s):  
Inchul Kim ◽  
Said Elghobashi ◽  
William A. Sirignano

Three-dimensional flow over two identical (solid or liquid) spheres which are held fixed relative to each other with the line connecting their centres normal to a uniform I stream is investigated numerically at Reynolds numbers 50, 100, and 150. We consider the lift, moment, and drag coefficients on the spheres and investigate their dependence on the distance between the two spheres. The computations show that, for a given Reynolds number, the two spheres are repelled when the spacing is of the order of the diameter but are weakly attracted at intermediate separation distances. For small spacing, the vortical structure of the near wake is significantly different from that of the axisymmetric wake that establishes at large separations. The partially confined flow passing between the two spheres entrains the flows coming around their other sides. Our results agree with available experimental and numerical data.

2009 ◽  
Vol 643 ◽  
pp. 349-362 ◽  
Author(s):  
DAVID LO JACONO ◽  
JUSTIN S. LEONTINI ◽  
MARK C. THOMPSON ◽  
JOHN SHERIDAN

A study of the flow past an oscillatory rotating cylinder has been conducted, where the frequency of oscillation has been matched to the natural frequency of the vortex street generated in the wake of a stationary cylinder, at Reynolds number 300. The focus is on the wake transition to three-dimensional flow and, in particular, the changes induced in this transition by the addition of the oscillatory rotation. Using Floquet stability analysis, it is found that the fine-scale three-dimensional mode that typically dominates the wake at a Reynolds number beyond that at the second transition to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of rotation beyond a critical amplitude, in agreement with past studies. However, the rotation does not suppress the development of three-dimensionality completely, as other modes are discovered that would lead to three-dimensional flow. In particular, the longer-wavelength mode that leads the three-dimensional transition in the wake of a stationary cylinder (referred to as mode A) is left essentially unaffected at low amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed as the two-dimensional near wake changes in character from a single- to a double-row wake; however, another mode is predicted to render the flow three-dimensional, dubbed mode D (for double row). This mode has the same spatio-temporal symmetries as mode A.


Author(s):  
Václav Cyrus

A straight compressor cascade of aspect ratio 2 was tested in a low speed tunnel within Reynolds number Re1 = 45 000 – 150 000 and inlet flow angle α1 = 35° – 48°. The profile of the blade was NACA 65-12-10. The purpose of the paper was to obtain data on three–dimensional flow in a straight cascade at low Reynolds numbers. Some experimental results on secondary flow have been made into simple correlation relations.


2017 ◽  
Vol 825 ◽  
pp. 631-650 ◽  
Author(s):  
Francesco Romanò ◽  
Arash Hajisharifi ◽  
Hendrik C. Kuhlmann

The topology of the incompressible steady three-dimensional flow in a partially filled cylindrical rotating drum, infinitely extended along its axis, is investigated numerically for a ratio of pool depth to radius of 0.2. In the limit of vanishing Froude and capillary numbers, the liquid–gas interface remains flat and the two-dimensional flow becomes unstable to steady three-dimensional convection cells. The Lagrangian transport in the cellular flow is organised by periodic spiralling-in and spiralling-out saddle foci, and by saddle limit cycles. Chaotic advection is caused by a breakup of a degenerate heteroclinic connection between the two saddle foci when the flow becomes three-dimensional. On increasing the Reynolds number, chaotic streamlines invade the cells from the cell boundary and from the interior along the broken heteroclinic connection. This trend is made evident by computing the Kolmogorov–Arnold–Moser tori for five supercritical Reynolds numbers.


2005 ◽  
Vol 128 (1) ◽  
pp. 166-177 ◽  
Author(s):  
Takayuki Matsunuma

Tip clearance losses represent a major efficiency penalty of turbine blades. This paper describes the effect of tip clearance on the aerodynamic characteristics of an unshrouded axial-flow turbine cascade under very low Reynolds number conditions. The Reynolds number based on the true chord length and exit velocity of the turbine cascade was varied from 4.4×104 to 26.6×104 by changing the velocity of fluid flow. The freestream turbulence intensity was varied between 0.5% and 4.1% by modifying turbulence generation sheet settings. Three-dimensional flow fields at the exit of the turbine cascade were measured both with and without tip clearance using a five-hole pressure probe. Tip leakage flow generated a large high total pressure loss region. Variations in the Reynolds number and freestream turbulence intensity changed the distributions of three-dimensional flow, but had no effect on the mass-averaged tip clearance loss of the turbine cascade.


1992 ◽  
Vol 238 ◽  
pp. 1-30 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast’ transition, from a laminar two-dimensional state at Reynolds number 200 to a turbulent state at Reynolds number 400. The process has been documented in several experimental investigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the Navier—Stokes equations at representative Reynolds numbers, up to 500. A high-order time-accurate, mixed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vortex street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vortex filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vortex filaments.Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance of intermittent phenomena. It is concluded that the wake undergoes transition to turbulence following the period-doubling route.


2014 ◽  
Vol 748 ◽  
pp. 433-456 ◽  
Author(s):  
Giuliano De Stefano ◽  
Oleg V. Vasilyev

AbstractThe wavelet-based eddy capturing approach is extended to three-dimensional bluff body flows, where the flow geometry is enforced through Brinkman volume penalization. The wavelet-collocation/volume-penalization combined method is applied to the simulation of vortex shedding flow behind an isolated stationary prism with square cross-section. Wavelet-based direct numerical simulation is conducted at low supercritical Reynolds number, where the wake develops fundamental three-dimensional flow structures, while wavelet-based adaptive large-eddy simulation supplied with the one-equation localized dynamic kinetic-energy-based model is performed at moderately high Reynolds number. The present results are in general agreement with experimental findings and numerical solutions provided by classical non-adaptive methods. This study demonstrates that the proposed hybrid methodology for modelling bluff body flows is feasible, accurate and efficient.


2007 ◽  
Vol 573 ◽  
pp. 457-478
Author(s):  
X. LIU ◽  
J. S. MARSHALL

A computational study has been performed to examine the amplification of three-dimensional flow features as a vortex with small-amplitude helical perturbations impinges on a circular cylinder whose axis is parallel to the nominal vortex axis. For sufficiently weak vortices with sufficiently small core radius in an inviscid flow, three-dimensional perturbations on the vortex core are indefinitely amplified as the vortex wraps around the cylinder front surface. The paper focuses on the effect of viscosity in regulating amplification of three-dimensional disturbances and on assessing the ability of two-dimensional computations to accurately model parallel vortex–cylinder interaction problems. The computations are performed using a multi-block structured finite-volume method for an incompressible flow, with periodic boundary conditions along the cylinder axis. Growth of three-dimensional flow features is examined using a proper-orthogonal decomposition of the Fourier-transformed vorticity field in the azimuthal and axial directions. The interaction is examined for different axial wavelengths and amplitudes of the initial helical vortex waves and for three different Reynolds numbers.


2011 ◽  
Vol 679 ◽  
pp. 77-100 ◽  
Author(s):  
QIANLONG LIU ◽  
ANDREA PROSPERETTI

The finite-Reynolds-number three-dimensional flow in a channel bounded by one and two parallel porous walls is studied numerically. The porous medium is modelled by spheres in a simple cubic arrangement. Detailed results on the flow structure and the hydrodynamic forces and couple acting on the sphere layer bounding the porous medium are reported and their dependence on the Reynolds number illustrated. It is shown that, at finite Reynolds numbers, a lift force acts on the spheres, which may be expected to contribute to the mobilization of bottom sediments. The results for the slip velocity at the surface of the porous layers are compared with the phenomenological Beavers–Joseph model. It is found that the values of the slip coefficient for pressure-driven and shear-driven flow are somewhat different, and also depend on the Reynolds number. A modification of the relation is suggested to deal with these features. The Appendix provides an alternative derivation of this modified relation.


Sign in / Sign up

Export Citation Format

Share Document