Inviscid separated flow over a non-slender delta wing

1995 ◽  
Vol 305 ◽  
pp. 307-345 ◽  
Author(s):  
D. W. Moore ◽  
D. I. Pullin

We consider inviscid incompressible flow about an infinite non-slender flat delta wing with leading-edge separation modeled by symmetrical conical vortex sheets. A similarity solution for the three dimensional steady velocity potential Φ is sought with boundary conditions to be satisfied on the line which is the intersection of the wing sheet surface with the surface of the unit sphere. A numerical approach is developed based on the construction of a special boundary element or ‘winglet’ which is effectively a Green function for the projection of ∇2Φ = 0 onto the spherical surface under the similarity ansatz. When the wing semi-apex angle γo is fixed satisfaction of the boundary conditions of zero normal velocity on the wing and zero normal velocity and pressure continuity across the vortex sheet then leads to a nonlinear eigenvalue problem. A method of ensuring a condition of zero lateral force on a lumped model of the inner part of the rolled-up vortex sheet gives a closed set of a equations which is solved numerically by Newton's method. We present and discuss the properties of solutions for γ0 in the range 1.30 < γ <89.50. The dependencies of these solutions on γ0 differs qualitatively from predictions of slender-body theory. In particular the velocity field is in general not conical and the similarity exponent must be calculated as part of the global eigenvalue problem. This exponent, together with the detailed flow field including the position and structure of the separated vortx sheet, depend only on γ0. In the limit of small γ0, a comparison with slender-body theory is made on the basis of an effective angle of incidence.

1967 ◽  
Vol 30 (1) ◽  
pp. 177-196 ◽  
Author(s):  
K. W. Mangler ◽  
J. Weber

Most of the existing methods for calculating the inviscid flow past a delta wing with leading-edge vortices are based on slender-body theory. When these vortices are represented by rolled-up vortex sheets in an otherwise irrotational flow, some of the assumptions of slender-body theory are violated near the centres of the spirals. The aim of the present report is to describe for the vortex core an alternative method in which only the assumption of a conical velocity field is made. An asymptotic solution valid near the centre of a rolled-up vortex sheet is derived for incompressible flow. Further asymptotic solutions are determined for two-dimensional flow fields with vortex sheets which vary with time in such a manner that the sheets remain similar in shape. A particular two-dimensional flow corresponds to the slender theory approximation for conical sheets.


2009 ◽  
Vol 622 ◽  
pp. 345-369 ◽  
Author(s):  
NICOLE MARHEINEKE ◽  
RAIMUND WEGENER

In this paper, we derive and investigate an asymptotic model for the dynamics of curved viscous inertial Newtonian fibres subjected to surface tension, as they occur in rotational spinning processes. Accordingly, we extend the slender body theory of Panda, Marheineke & Wegener (Math. Meth. Appl. Sci., vol. 31, 2008, p. 1153) by including surface tension and deducing boundary conditions for the free end of the fibre. The asymptotic model accounts for the inner viscous transport and places no restrictions on either the motion or the shape of the fibre centreline. Depending on the capillary number, the boundary conditions yield an explicit description for the temporal evolution of the fibre end. We study numerically the behaviour of the fibre as a function of the effects of viscosity, gravity, rotation and surface tension.


Author(s):  
Matias Ruiz ◽  
Ory Schnitzer

We develop a slender-body theory for plasmonic resonance of slender metallic nanoparticles, focusing on a general class of axisymmetric geometries with locally paraboloidal tips. We adopt a modal approach where one first solves the plasmonic eigenvalue problem, a geometric spectral problem which governs the surface-plasmon modes of the particle; then, the latter modes are used, in conjunction with spectral-decomposition, to analyse localized-surface-plasmon resonance in the quasi-static limit. We show that the permittivity eigenvalues of the axisymmetric modes are strongly singular in the slenderness parameter, implying widely tunable, high-quality-factor, resonances in the near-infrared regime. For that family of modes, we use matched asymptotics to derive an effective eigenvalue problem, a singular non-local Sturm–Liouville problem, where the lumped one-dimensional eigenfunctions represent axial voltage profiles (or charge line densities). We solve the effective eigenvalue problem in closed form for a prolate spheroid and numerically, by expanding the eigenfunctions in Legendre polynomials, for arbitrarily shaped particles. We apply the theory to plane-wave illumination in order to elucidate the excitation of multiple resonances in the case of non-spheroidal particles.


The flow at incidence to a slender delta wing with a sharp leading edge usually separates along this edge, i.e. a vortex layer extends from the edge into the main flow. This layer rolls up above and inboard of the leading edge to form a region of high vorticity which strongly influences the flow pattern. This paper gives a theoretical treatment, more complete than those hitherto available, of this type of flow. A potential flow model is constructed, in which the vortex layer is replaced by a vortex sheet of spiral form, and the problem is then reduced to a two-dimensional one by the use of slender-body theory and the assumption of a conical velocity field. The boundary conditions expressing that the vortex sheet is a stream surface and sustains no pressure difference determine, in principle, its shape and strength. In practice, the inner part of the spiral and the finite, outer part of the spiral, which joins the inner part to the leading edge, are treated separately. The inner part is regarded as small and a solution is given for it which is asymptotically correct as the centre of the spiral is approached. The outer part is replaced by a sheet whose shape and strength depend on a finite number of parameters; these parameters are determined by applying the boundary conditions at isolated points. Results are given for the shape of the sheet and the pressures, loadings and forces on the wing, as functions of the ratio of the incidence to the aspect ratio.


1960 ◽  
Vol 9 (2) ◽  
pp. 305-317 ◽  
Author(s):  
M. J. Lighthill

The paper seeks to determine what transverse oscillatory movements a slender fish can make which will give it a high Froude propulsive efficiency, $\frac{\hbox{(forward velocity)} \times \hbox{(thrust available to overcome frictional drag)}} {\hbox {(work done to produce both thrust and vortex wake)}}.$ The recommended procedure is for the fish to pass a wave down its body at a speed of around $\frac {5} {4}$ of the desired swimming speed, the amplitude increasing from zero over the front portion to a maximum at the tail, whose span should exceed a certain critical value, and the waveform including both a positive and a negative phase so that angular recoil is minimized. The Appendix gives a review of slender-body theory for deformable bodies.


1976 ◽  
Vol 75 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Joseph B. Keller ◽  
Sol I. Rubinow

Slow flow of a viscous incompressible fluid past a slender body of circular crosssection is treated by the method of matched asymptotic expansions. The main result is an integral equation for the force per unit length exerted on the body by the fluid. The novelty is that the body is permitted to twist and dilate in addition to undergoing the translating, bending and stretching, which have been considered by others. The method of derivation is relatively simple, and the resulting integral equation does not involve the limiting processes which occur in the previous work.


Sign in / Sign up

Export Citation Format

Share Document