The three-dimensional interaction of a streamwise vortex with a large-chord lifting surface: theory and experiment

1996 ◽  
Vol 322 ◽  
pp. 51-79 ◽  
Author(s):  
Gustavo C. R. Bodstein ◽  
Albert R. George ◽  
C.-Y. Hui

The three-dimensional vortex flow that develops around a close-coupled canard-wing configuration is characterized by a strong interaction between the vortex generated at the canard and the aircraft wing. In this paper, a theoretical potential flow model is devised to uncover the basic structure of the pressure and velocity distributions on the wing surface. The wing is modelled as a semi-infinite lifting-surface set at zero angle of attack. It is assumed that the vortex is a straight vortex filament, with constant strength, and lying in the freestream direction. The vortex filament is considered to be orthogonal to the leading-edge, passing a certain height over the surface. An incompressible and steady potential flow formulation is created based on the three-dimensional Laplace's equation for the velocity potential. The boundary-value problem is solved analytically using Fourier transforms and the Wiener-Hopf technique. A closed-form solution for the velocity potential is determined, from which the velocity and pressure distributions on the surface and a vortex path correction are obtained. The model predicts an anti-symmetric pressure distribution along the span in region near the leading-edge, and a symmetric pressure distribution downstream from it. The theory also predicts no vertical displacement of the vortex, but a significant lateral displacement. A set of experiments is carried out to study the main features of the flow and to test the theoretical model above. The experimental results include helium-soap bubble and oil-surface flow pattern visualization, as well as pressure measurements. The comparison shows good agreement only for a weak interaction case, whereas for the case where the interaction is strong, secondary boundary-layer separation and vortex breakdown are observed to occur, mainly owing to the strong vortex-boundary layer interaction. In such a case the model does not agree well with the experiments.

2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


1995 ◽  
Vol 39 (04) ◽  
pp. 297-312
Author(s):  
You-Hua Liu

Both slipstream deformation and viscous effects are factors that affect the performance of a rotating marine propeller but neither of them has been properly treated in most of the current lifting-surface methods and surface panel theories. With the introduction of a partial roll-up wake model that is flexible to various cases of propeller geometry and loading condition, this paper presents a vortex-lattice method that can improve propeller performance prediction especially at heavy loading conditions. Some observations on the calculation of the blade leading-edge suction force and how to deduct it to account for the viscous drag increasing are given. The scale effect of propeller performance can be readily predicted by the quasi-three-dimensional boundary-layer calculation presented in this paper. Some patterns of the limiting streamlines on blade surfaces are also illustrated and compared with experimental results.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


2006 ◽  
Author(s):  
A. Kourta ◽  
G. Petit ◽  
J. C. Courty ◽  
J. P. Rosenblum

The control of subsonic high lift induced separation on airfoil may improve the flight envelope of current aircraft or even simplify the complex and heavy high-lift devices on commercial airframes. Until now, synthetic jets have proved a really interesting efficiency to delay or remove even leading-edge located separated areas on high-lift configuration but are not efficient for real scale aircrafts. In case of pressure-like separation (i.e. from trailing-edge), synthetic jets can be replaced by so the called “Vortex Generator Jets” which create strong longitudinal vortices that increase mixing in inner boundary layer and consequently the skin friction coefficient is increased to prevent separation. In this study, numerical simulations were undertaken on a generic three dimensional flat plate in order to quantify the effect of the longitudinal vortices on the natural skin friction coefficient. Both counter and co-rotative devices were tested at different exhaust velocities and distances between each others. Finally co-rotative vortex generators jets were tested on a three dimensional generic airfoil ONERA D. Results show a delay of the separation occurence but this solution does not seem to be as robust as synthetic jets. The study of jets spacing with respect to the efficiency of the devices shows a maximum for a given ratio of spacing to exhaust velocity.


2001 ◽  
Vol 426 ◽  
pp. 73-94 ◽  
Author(s):  
A. A. MASLOV ◽  
A. N. SHIPLYUK ◽  
A. A. SIDORENKO ◽  
D. ARNAL

Experimental investigations of the boundary layer receptivity, on the sharp leading edge of a at plate, to acoustic waves induced by two-dimensional and three- dimensional perturbers, have been performed for a free-stream Mach number M∞ = 5.92. The fields of controlled free-stream disturbances were studied. It was shown that two-dimensional and three-dimensional perturbers radiate acoustic waves and that these perturbers present a set of harmonic motionless sources and moving sources with constant amplitude. The disturbances excited in the boundary layer were measured. It was found that acoustic waves impinging on the leading edge generate Tollmien–Schlichting waves in the boundary layer. The receptivity coefficients were obtained for several radiation conditions and intensities. It was shown that there is a dependence of receptivity coefficients on the wave inclination angles.


1985 ◽  
Vol 154 ◽  
pp. 163-185 ◽  
Author(s):  
Ching-Mao Hung ◽  
Pieter G. Buning

The Reynolds-averaged Navier–Stokes equations are solved numerically for supersonic flow over a blunt fin mounted on a flat plate. The fin shock causes the boundary layer to separate, which results in a complicated, three-dimensional shock-wave and boundary-layer interaction. The computed results are in good agreement with the mean static pressure measured on the fin and the flat plate. The main features, such as peak pressure on the fin leading edge and a double peak on the plate, are predicted well. The role of the horseshoe vortex is discussed. This vortex leads to the development of high-speed flow and, hence, low-pressure regions on the fin and the plate. Different thicknesses of the incoming boundary layer have been studied. Varying the thicknesses by an order of magnitude shows that the size of the horseshoe vortex and, therefore, the spatial extent of the interaction are dominated by inviscid flow and only weakly dependent on the Reynolds number. Coloured graphics are used to show details of the interaction flow field.


Author(s):  
W. T. Thompkins ◽  
Siu Shing Tong

A new inverse or design calculation procedure has been devised for non-potential flow fields and has been applied to turbomachinery blade row design. This technique uses as input quantities the surface pressure distribution and geometric constraints and may be used for two- or three-dimensional flows as well as inviscid or viscous flows. If a geometry satisfying both the constraints and the pressure distribution cannot be found, a solution satisfying the constraints and a relaxed pressure distribution is found. Calculational examples are presented for inviscid supersonic compressor cascade designs and the extension to three-dimensional flows discussed.


2010 ◽  
Vol 653 ◽  
pp. 245-271 ◽  
Author(s):  
L.-U. SCHRADER ◽  
L. BRANDT ◽  
C. MAVRIPLIS ◽  
D. S. HENNINGSON

Receptivity of the two-dimensional boundary layer on a flat plate with elliptic leading edge is studied by numerical simulation. Vortical perturbations in the oncoming free stream are considered, impinging on two leading edges with different aspect ratio to identify the effect of bluntness. The relevance of the three vorticity components of natural free-stream turbulence is illuminated by considering axial, vertical and spanwise vorticity separately at different angular frequencies. The boundary layer is most receptive to zero-frequency axial vorticity, triggering a streaky pattern of alternating positive and negative streamwise disturbance velocity. This is in line with earlier numerical studies on non-modal growth of elongated structures in the Blasius boundary layer. We find that the effect of leading-edge bluntness is insignificant for axial free-stream vortices alone. On the other hand, vertical free-stream vorticity is also able to excite non-modal instability in particular at zero and low frequencies. This mechanism relies on the generation of streamwise vorticity through stretching and tilting of the vertical vortex columns at the leading edge and is significantly stronger when the leading edge is blunt. It can thus be concluded that the non-modal boundary-layer response to a free-stream turbulence field with three-dimensional vorticity is enhanced in the presence of a blunt leading edge. At high frequencies of the disturbances the boundary layer becomes receptive to spanwise free-stream vorticity, triggering Tollmien–Schlichting (T-S) modes and receptivity increases with leading-edge bluntness. The receptivity coefficients to free-stream vortices are found to be about 15% of those to sound waves reported in the literature. For the boundary layers and free-stream perturbations considered, the amplitude of the T-S waves remains small compared with the low-frequency streak amplitudes.


2021 ◽  
Author(s):  
Julian Bardin

An aerostructural analysis program was developed to predict the aerodynamic performance of a non-rigid, low-sweep wing. The wing planform was geometrically defined to have a rectangular section, and a trapezoidal section. The cross-section was further set to an airfoil shape which was consistent across the entire wingspan. Furthermore, to enable the inclusion of this multidisciplinary analysis module into an optimization scheme, the wing geometry was defined by a series of parameters: root chord, taper ratio, leading-edge sweep, semi-span length, and the kink location. Aerodynamic analysis was implemented through the quasi-three-dimensional approach, including a three-dimensional inviscid solution and a sectional two-dimensional viscous solution. The inviscid analysis was provided through the implementation of the vortex ring lifting surface method, which modelled the wing about its mean camber surface. The viscous aerodynamic solution was implemented through a sectional slicing of the wing. For each section, the effective angle of attack was determined and provided as an input to a two-dimensional airfoil solver. This airfoil solution was comprised of two subcomponents: a linear-strength vortex method inviscid solution, and a direct-method viscous boundary layer computation. The converged airfoil solution was developed by adjusting the effective airfoil geometry to account for the boundary layer displacement thickness, which in itself required the inviscid tangential speeds to compute. The structural solution was implemented through classical beam theory, with a torsion and bending calculator included. The torque and bending moment distribution along the wing were computed from the lift distribution, neglecting the effects of drag, and used to compute the twist and deflection of the wing. Interdisciplinary coupling was achieved through an iterative scheme. With the developed implementation, the inviscid lift loads were used to compute the deformation of the wing. This deformation was used to update the wing mesh, and the inviscid analysis was run again. This iteration was continued until the lift variation between computations was below 0.1%. Once the solution was converged upon by the inviscid and structural solutions, the viscous calculator was run to develop the parasitic drag forces. Once computation had completed, the aerodynamic lift and drag forces were output to mark the completion of execution.


Sign in / Sign up

Export Citation Format

Share Document