Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble

1997 ◽  
Vol 337 ◽  
pp. 1-24 ◽  
Author(s):  
P. J. SAATHOFF ◽  
W. H. MELBOURNE

Wind-tunnel experiments were conducted to investigate the cause of large pressure fluctuations near leading edges of sharp-edged bluff bodies. Measurements obtained with a blunt flat plate showed that very low pressures occur in a narrow region located approximately 0.25XR from the leading edge, where XR defines the distance from the leading edge to the mean reattachment location. This phenomenon occurs in the undisturbed flow as well as turbulent flow, although the magnitude of peak pressure fluctuations increases with both turbulence intensity, σu/u, and turbulence scale, LX.Flow visualization experiments conducted with a high-speed cine-camera reveal the process that causes large pressure fluctuations in separation bubbles. This process is initiated when a perturbation in the approaching flow causes a roll-up of the separated shear layer, producing a strong vortex near the surface. Conditional sampling of pressure data was used to determine the spanwise length of the vortex. A significant increase in the spanwise correlation of pressure fluctuations occurs when the shear layer rolls up. Coherence measurements indicate that the spanwise length of vortices in the separation bubble is not directly related to longitudinal velocity fluctuations in the free-stream.

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
A. Samson ◽  
S. Sarkar

This paper describes the change in the transition mechanism of a separated boundary layer formed from the semicircular leading-edge of a constant thickness airfoil as the free-stream turbulence (fst) increases. Experiments are carried out in a low-speed wind tunnel for three levels of fst (Tu = 0.65%, 4.6%, and 7.7%) at two Reynolds numbers (Re) 25,000 and 55,000 (based on the leading-edge diameter). Measurements of velocity and surface pressure along with flow field visualizations are carried out using a planar particle image velocimetry (PIV). The flow undergoes separation in the vicinity of leading-edge and reattaches in the downstream forming a separation bubble. The shear layer is laminar up to 20% of separation length, and then, the perturbations are amplified in the second-half attributing to breakdown and reattachment. The bubble length is highly susceptible to change in Tu. At low fst, the primary mode of instability of the shear layer is Kelvin–Helmholtz (K-H), although the local viscous effect may not be neglected. At high fst, the mechanism of shear layer rollup is bypassed with transient growth of perturbations along with evidence of spot formation. The predominant shedding frequency when normalized with respect to the momentum thickness at separation is almost constant and shows a good agreement with the previous studies. After reattachment, the flow takes longer length to approach a canonical boundary layer.


2011 ◽  
Vol 681 ◽  
pp. 370-410 ◽  
Author(s):  
JOHN D. COULL ◽  
HOWARD P. HODSON

This paper examines the transition process in a boundary layer similar to that present over the suction surfaces of aero-engine low-pressure (LP) turbine blades. This transition process is of significant practical interest since the behaviour of this boundary layer largely determines the overall efficiency of the LP turbine. Modern ‘high-lift’ blade designs typically feature a closed laminar separation bubble on the aft portion of the suction surface. The size of this bubble and hence the inefficiency it generates is controlled by the transition between laminar and turbulent flow in the boundary layer and separated shear layer. The transition process is complicated by the inherent unsteadiness of the multi-stage machine: the wakes shed by one blade row convect through the downstream blade passages, periodically disturbing the boundary layers. As a consequence, the transition to turbulence is multi-modal by nature, being promoted by periodic and turbulent fluctuations in the free stream and the inherent instabilities of the boundary layer. Despite many studies examining the flow behaviour, the detailed physics of the unsteady transition phenomena are not yet fully understood. The boundary-layer transition process has been studied experimentally on a flat plate. The opposing test-section wall was curved to impose a streamwise pressure distribution typical of modern high-lift LP turbines over the flat plate. The presence of an upstream blade row has been simulated by a set of moving bars, which shed wakes across the test section inlet. Further upstream, a grid has been installed to elevate the free-stream turbulence to a level believed to be representative of multi-stage LP turbines. Extensive particle imaging velocimetry (PIV) measurements have been performed on the flat-plate boundary layer to examine the flow behaviour. In the absence of the incoming bar wakes, the grid-generated free-stream turbulence induces relatively weak Klebanoff streaks in the boundary layer which are evident as streamwise streaks of low-velocity fluid. Transition is promoted by the streaks and by the inherent inflectional (Kelvin–Helmholtz (KH)) instability of the separation bubble. In unsteady flow, the incoming bar wakes generate stronger Klebanoff streaks as they pass over the leading edge, which convect downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The region of amplified streaks convects in a similar manner to a classical turbulent spot: the leading and trailing edges travel at around 88% and 50% of the free-stream velocity, respectively. The strongest disturbances travel at around 70% of the free-stream velocity. The wakes induce a second type of disturbance as they pass over the separation bubble, in the form of short-span KH structures. Both the streaks and the KH structures contribute to the early wake-induced transition. The KH structures are similar to those observed in the simulation of separated flow transition with high free-stream turbulence by McAuliffe & Yaras (ASME J. Turbomach., vol. 132, no. 1, 2010, 011004), who observed that these structures originated from localised instabilities of the shear layer induced by Klebanoff streaks. In the current measurements, KH structures are frequently observed directly under the path of the wake. The wake-amplified Klebanoff streaks cannot affect the generation of these structures since they do not arrive at the bubble until later in the wake cycle. Rather, the KH structures arise from an interaction between the flow disturbances in the wake and localised instabilities in the shear layer, which are caused by the weak Klebanoff streaks induced by the grid turbulence. The breakdown of the KH structures to small-scale turbulence occurs a short time after the wake has passed over the bubble, and is largely driven by the arrival of the wake-amplified Klebanoff streaks from the leading edge. During this process, the re-attachment location moves rapidly upstream. The minimum length of the bubble occurs when the strongest wake-amplified Klebanoff streaks arrive from the leading edge; these structures travel at around 70% of the free-stream velocity. The bubble remains shorter than its steady-flow length until the trailing edge of the wake-amplified Klebanoff streaks, travelling at 50% of the free-stream velocity, convect past. After this time, the reattachment location moves aft on the surface as a consequence of a calmed flow region which follows behind the wake-induced turbulence.


Author(s):  
Bryn N. Ubald ◽  
Jiahuan Cui ◽  
Rob Watson ◽  
Paul G. Tucker ◽  
Shahrokh Shahpar

The measurement accuracy of the temperature/pressure probe mounted at the leading edge of a turbine/compressor blade is crucial for estimating the fuel consumption of a turbo-fan engine. Apart from the measurement error itself, the probe also introduces extra losses. This again would compromise the measurement accuracy of the overall engine efficiency. This paper utilizes high-fidelity numerical analysis to understand the complex flow around the probe and quantify the loss sources due to the interaction between the blade and its instrumentation. With the inclusion of leading edge probes, three dimensional flow phenomena develop, with some flow features acting in a similar manner to a jet in cross flow. The separated flow formed at the leading edge of the probe blocks a large area of the probe bleed-hole, which is one of the reasons why the probe accuracy can be sensitive to Mach and Reynolds numbers. The addition of 4% free stream turbulence is shown to have a marginal impact on the jet trajectory originated from the probe bleedhole. However, a slight reduction is observed in the size of the separation bubble formed at the leading edge of the probe, preceding the two bleedhole exits. The free stream turbulence also has a significant impact on the size of the separation bubble near the trailing edge of the blade. With the addition of the free stream turbulence, the loss observed within the trailing edge wake is reduced. More than 50% of the losses at the cascade exit are generated by the leading edge probe. A breakdown of the dissipation terms from the mean flow kinetic energy equation demonstrates that the Reynolds stresses are the key terms in dissipating the counter rotating vortex pairs with the viscous stresses responsible for the boundary layer.


Author(s):  
Souvik Naskar ◽  
S. Sarkar

Abstract Modern commercial airliners use multi-element aerofoils to enhance take-off and landing performance. Further, multielement aerofoil configurations have been shown to improve the aerodynamic characteristics of wind turbines. In the present study, high resolution Large Eddy Simulation (LES) is used to explore the low Reynolds Number (Re = 0.832 × 104) aerodynamics of a 30P30N multi-element aerofoil at an angle of attack, α = 4°. In the present simulation, wake shed from a leading edge element or slat is found to interact with the separated shear layer developing over the suction surface of the main wing. High receptivity of shear layer via amplification of free-stream turbulence leads to rollup and breakdown, forming a large separation bubble. A transient growth of fluctuations is observed in the first half of the separation bubble, where levels of turbulence becomes maximum near the reattachment and then decay depicting saturation of turbulence. Results of the present LES are found to be in close agreement with the experiment depicting high vortical activity in the outer layer. Some features of the flow field here are similar to those occur due to interactions of passing wake and the separated boundary layer on the suction surface of high lift low pressure turbine blades.


1985 ◽  
Vol 107 (1) ◽  
pp. 127-134 ◽  
Author(s):  
H. P. Hodson

The state of the boundary layers near the leading edge of a high-speed turbine blade has been investigated, in cascade, using an array of surface-mounted, constant-temperature, hot-film anemometers. The measurements are interpreted with the aid of inviscid and viscous prediction codes. The effects of Reynolds number, compressibility, incidence, and free-stream turbulence are described. In all cases, the initial development of the boundary layers was extremely complex and, even at design conditions, separation and reattachment, transition and relaminarization were found to occur.


Author(s):  
L Tain ◽  
N. A. Cumpsty

The flow around the leading edge of a compressor blade is interesting and important because there is such a strong interaction between the viscous boundary layer flow and the inviscid flow around it. As the velocity of the inviscid flow just outside the boundary layer is increased from subsonic to supersonic, the type of viscous-inviscid interaction changes; this has important effects on the boundary layer downstream and thus on the performance of the aerofoil or blade. An investigation has been undertaken of the flow in the immediate vicinity of a simulated compressor blade leading edge for a range of inlet Mach numbers from 0.6 to 0.95. The two-dimensional aerofoil used has a circular leading edge on the front of a flat aerofoil. The incidence, Reynolds number and level of free-stream turbulence have been varied. Measurements include the static pressure around the leading edge and downstream and the boundary layer profile far enough downstream for the leading edge bubble to have reattached. Schlieren pictures were also obtained. The flow around the leading edge becomes supersonic when the inlet Mach number is 0.7 for the zero-incidence case; for an inlet Mach number of 0.95 the peak Mach number was approximately 1.7. The pattern of flow around the leading edge alters as the Mach number is increased, and at the highest Mach number tested here the laminar separation bubble is removed. Positive incidence, raised free-stream turbulence or increased Reynolds number at intermediate inlet Mach numbers tended to promote flow patterns similar to those seen at the highest inlet Mach number. Both increased free-stream turbulence and increased Reynolds number, for the same Mach number and incidence, produced thinner shear layers including a thinner boundary layer well downstream. The measurements were supported by calculations using the MSES code (the single aerofoil version of the MISES code); the calculations were helpful in interpreting the measured results and were demonstrated to be accurate enough to be used for design purposes.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Bryn N. Ubald ◽  
Paul G. Tucker ◽  
Jiahuan Cui ◽  
Rob Watson ◽  
Shahrokh Shahpar

The measurement accuracy of the temperature/pressure probe mounted at the leading edge of a turbine/compressor blade is crucial for estimating the fuel consumption of a turbo-fan engine. Apart from the measurement error itself, the probe also introduces extra losses. This again would compromise the measurement accuracy of the overall engine efficiency. This paper utilizes high-fidelity numerical analysis to understand the complex flow around the probe and quantify the loss sources due to the interaction between the blade and its instrumentation. With the inclusion of leading-edge probes, three-dimensional flow phenomena develop, with some flow features acting in a similar manner to a jet in cross flow. The separated flow formed at the leading edge of the probe blocks a large area of the probe bleedhole, which is one of the reasons why the probe accuracy can be sensitive to Mach and Reynolds numbers. The addition of 4% free-stream turbulence is shown to have a marginal impact on the jet trajectory originated from the probe bleedhole. However, a slight reduction is observed in the size of the separation bubble formed at the leading edge of the probe, preceding the two bleedhole exits. The free-stream turbulence also has a significant impact on the size of the separation bubble near the trailing edge of the blade. With the addition of the free-stream turbulence, the loss observed within the trailing edge wake is reduced. More than 50% of the losses at the cascade exit are generated by the leading-edge probe. A breakdown of the dissipation terms from the mean flow kinetic energy equation demonstrates that the Reynolds stresses are the key terms in dissipating the counter-rotating vortex pairs with the viscous stresses responsible for the boundary layer.


Author(s):  
K. Anand ◽  
S. Sarkar ◽  
N. Thilakan

The behaviour of a separated shear layer past a semi-circular leading edge flat plate, its transition and reattachment downstream to separation are investigated for different imposed pressure gradients. The experiments are carried out in a blowing tunnel for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The mean flow characteristics and the instantaneous vector field are documented using a two-component LDA and a planar PIV, whereas, surface pressures are measured with Electronically scanned pressure (ESP). The onset of separation occurs near the blend point for all values of β (flap angle deflection), however, a considerable shift is noticed in the point of reattachment. The dimensions of the separation bubble is highly susceptible to β and plays an important role in the activity of the outer shear layer. Instantaneous results from PIV show a significant unsteadiness in the shear layer at about 30% of the bubble length, which is further amplified in the second half of the bubble leading to three-dimensional motions. The reverse flow velocity is higher for a favourable pressure gradient (β = +30°) and is found to be 21% of the free stream velocity. The Reynolds number calculated based on ll (laminar shear layer length), falls in the range of 0.9×104 to 1.4×104. The numerical values concerning the criterion for separation and reattachment agree well with the available literature.


Author(s):  
Birinchi K. Hazarika ◽  
Charles Hirsch

An experimental investigation of a separation bubble on a C4 leading edge plate at an incidence in a low turbulence free stream at six Reynolds numbers, is reported. The long separation bubble, formed at the leading edge, has a short laminar and transitional zone followed by a long turbulent zone. The increase in Reynolds number reduced the laminar and transitional part significantly, but its effect on the length of the separation bubble is marginal till the transition starts at the separation point. The peak intermittency factor, which occurs at the centre of the shear layer, follows the universal intermittency distribution curve. The spot production rate for the separated flows are several orders of magnitude higher than that for the attached boundary layers. The transition process is initiated by the amplification of the instability waves in the shear layer similar to the natural mode of transition. At high Reynolds numbers, the onset of transition is likely to take place at the separation point. At lower chord Reynolds numbers, the separation to onset Reynolds number and the spot production rate parameter are functions of the separation momentum thickness Reynolds number. The free stream turbulence intensity has a strong influence on the spot production rate. New correlations for transition in the leading edge separation bubbles are proposed based on all the available intermittency measurements in the leading edge separation bubbles.


Sign in / Sign up

Export Citation Format

Share Document