scholarly journals Flow of Blue Glacier, Olympic Mountains, Washington, U.S.A.

1974 ◽  
Vol 13 (68) ◽  
pp. 187-212 ◽  
Author(s):  
Mark F. Meier ◽  
W. Barclay Kamb ◽  
Clarence R. Allen ◽  
Robert P. Sharp

Velocity and strain-rate patterns in a small temperate valley glacier display flow effects of channel geometry, ice thickness, surface slope, and ablation. Surface velocities of 20–55 m/year show year-to-year fluctuations of 1.5–3 m/year. Transverse profiles of velocity have the form of a higher-order parabola modified by the effects of flow around a broad bend in the channel, which makes the velocity profile asymmetric, with maximum velocity displaced toward the outside of the bend. Marginal sliding rates are 5–22 m/year against bedrock and nil against debris. Velocity vectors diverge from the glacier center-line near the terminus, in response to surface ice loss, but converge toward it near the firn line because of channel narrowing. Plunge of the vectors gives an emergence flow component that falls short of balancing ice loss by about 1 m/year. Center-line velocities vary systematically with ice thickness and surface slope. In the upper half of the reach studied, effects of changing thickness and slope tend to compensate, and velocities are nearly constant; in the lower half, the effects are cumulative and velocities decrease progressively down-stream. Where the slope increases down-stream from 7° to 9°, reflecting a bedrock step, there is localized longitudinal extension of 0.03 year–1followed by compression of 0.08 year–1where the slope decreases. Marginal shear (up to 0.5 year–1) is strongly asymmetric due to flow around the bend: the stress center-line, where one of the principal axes becomes longitudinal, is displaced 150 m toward the inside of the bend. This effect is prominently visible in the crevasse pattern. Ice fluxes calculated independently by “laminar” flow theory and by continuity disagree in a way which shows that internal deformation of the ice is controlled not by local surface slope but by an effective slope that is nearly constant over the reach studied.

1974 ◽  
Vol 13 (68) ◽  
pp. 187-212 ◽  
Author(s):  
Mark F. Meier ◽  
W. Barclay Kamb ◽  
Clarence R. Allen ◽  
Robert P. Sharp

Velocity and strain-rate patterns in a small temperate valley glacier display flow effects of channel geometry, ice thickness, surface slope, and ablation. Surface velocities of 20–55 m/year show year-to-year fluctuations of 1.5–3 m/year. Transverse profiles of velocity have the form of a higher-order parabola modified by the effects of flow around a broad bend in the channel, which makes the velocity profile asymmetric, with maximum velocity displaced toward the outside of the bend. Marginal sliding rates are 5–22 m/year against bedrock and nil against debris. Velocity vectors diverge from the glacier center-line near the terminus, in response to surface ice loss, but converge toward it near the firn line because of channel narrowing. Plunge of the vectors gives an emergence flow component that falls short of balancing ice loss by about 1 m/year. Center-line velocities vary systematically with ice thickness and surface slope. In the upper half of the reach studied, effects of changing thickness and slope tend to compensate, and velocities are nearly constant; in the lower half, the effects are cumulative and velocities decrease progressively down-stream. Where the slope increases down-stream from 7° to 9°, reflecting a bedrock step, there is localized longitudinal extension of 0.03 year–1 followed by compression of 0.08 year–1 where the slope decreases. Marginal shear (up to 0.5 year–1) is strongly asymmetric due to flow around the bend: the stress center-line, where one of the principal axes becomes longitudinal, is displaced 150 m toward the inside of the bend. This effect is prominently visible in the crevasse pattern. Ice fluxes calculated independently by “laminar” flow theory and by continuity disagree in a way which shows that internal deformation of the ice is controlled not by local surface slope but by an effective slope that is nearly constant over the reach studied.


1984 ◽  
Vol 5 ◽  
pp. 185-190 ◽  
Author(s):  
I. M. Whillans ◽  
K. C. Jezek ◽  
A. R. Drew ◽  
N. Gundestrup

Detailed studies of the last 20 km of the flow-line leading to the core hole at Dye 3 Greenland, provide a description of ice flow over and around basal hills. The surface pattern is very simple. Velocity vectors are nearly parallel to one another and the largest variations in velocity are speed changes along the direction of flow. The surface elevation is stepped and the speed is faster than average where the surface slope is steepest. These positions correspond to basal highs, and the surface velocity increases as expected, based on the decrease in ice thickness, which indicates that most of the ice thickness must vary in velocity as does surface ice. Further support for this comes from the form of an internal radio-reflecting layer, which, in general, has the same shape as the bed but with much reduced relief. The damping of the relief is the same both along and across the flowline, suggesting that lateral velocity fluctuations are not important and that flow around and between obstacles is not well developed at the surface or at depth. At two sites, however, the internal layer does not match the bed and at one of these there must be important third-dimensional flow at depth.


1984 ◽  
Vol 5 ◽  
pp. 185-190 ◽  
Author(s):  
I. M. Whillans ◽  
K. C. Jezek ◽  
A. R. Drew ◽  
N. Gundestrup

Detailed studies of the last 20 km of the flow-line leading to the core hole at Dye 3 Greenland, provide a description of ice flow over and around basal hills. The surface pattern is very simple. Velocity vectors are nearly parallel to one another and the largest variations in velocity are speed changes along the direction of flow. The surface elevation is stepped and the speed is faster than average where the surface slope is steepest. These positions correspond to basal highs, and the surface velocity increases as expected, based on the decrease in ice thickness, which indicates that most of the ice thickness must vary in velocity as does surface ice. Further support for this comes from the form of an internal radio-reflecting layer, which, in general, has the same shape as the bed but with much reduced relief. The damping of the relief is the same both along and across the flowline, suggesting that lateral velocity fluctuations are not important and that flow around and between obstacles is not well developed at the surface or at depth. At two sites, however, the internal layer does not match the bed and at one of these there must be important third-dimensional flow at depth.


2012 ◽  
Vol 19 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Yinke Dou ◽  
Xiaomin Chang

Abstract Ice thickness is one of the most critical physical indicators in the ice science and engineering. It is therefore very necessary to develop in-situ automatic observation technologies of ice thickness. This paper proposes the principle of three new technologies of in-situ automatic observations of sea ice thickness and provides the findings of laboratory applications. The results show that the in-situ observation accuracy of the monitor apparatus based on the Magnetostrictive Delay Line (MDL) principle can reach ±2 mm, which has solved the “bottleneck” problem of restricting the fine development of a sea ice thermodynamic model, and the resistance accuracy of monitor apparatus with temperature gradient can reach the centimeter level and research the ice and snow substance balance by automatically measuring the glacier surface ice and snow change. The measurement accuracy of the capacitive sensor for ice thickness can also reach ±4 mm and the capacitive sensor is of the potential for automatic monitoring the water level under the ice and the ice formation and development process in water. Such three new technologies can meet different needs of fixed-point ice thickness observation and realize the simultaneous measurement in order to accurately judge the ice thickness.


1977 ◽  
Vol 18 (79) ◽  
pp. 181-194 ◽  
Author(s):  
R. Bindschadler ◽  
W. D. Harrison ◽  
C. F. Raymond ◽  
R. Crosson

AbstractMeasurement of geometry, motion, and mass balance from Variegated Glacier, Alaska portray conditions in this surge-type glacier close to the mid-point of its 20 year surge cycle. Comparison of longitudinal profiles of ice depth, surface slope, and surface speed indicate that the motion occurs largely by internal deformation assuming the ice deforms according to the experimental law of Glen. Surface speed is not noticeably affected by local surface slope on the scale of the ice thickness or smaller, but correlates well with slope determined on a longitudinal averaging scale about one order of magnitude larger than the ice depth. The rate of motion on Variegated Glacier agrees well with rates on non-surge type temperate glaciers which have similar depth and slope. Although the (low regime at the time of the measurements is apparently typical of temperate glaciers, a large discrepancy between the balance flux needed for steady state and the actual flux is indicative of a rapidly changing surface elevation profile and internal stress distribution.


1982 ◽  
Vol 28 (99) ◽  
pp. 325-332
Author(s):  
Robert W. Jacobel

AbstractDisplacement of an array of eight stakes was measured at approximately 12 h intervals on South Cascade Glacier, Washington, for a period of 638 h during July and August 1979. The array was located on the glacier center-line and had overall dimensions comparable to the 200 m ice thickness in this part of the glacier. Variations in velocity for individual stakes was typically 100% for periods of 12 h but decreased for longer time intervals in accordance with reports in the literature. The constraint of requiring compatible motion for the entire array reduces the averaged short-term fluctuations to the same order as the variations between stakes for a given 12 h period. This implies that non-uniformity in individual stake motion does not represent true velocity variation of the studied portion of the glacier.


1970 ◽  
Vol 9 (56) ◽  
pp. 195-212 ◽  
Author(s):  
R. Haefeli

All the measurements involved concern the glacier tongue between its end and 2 600 m a.s.l. The total loss of volume of the Unteraargletscher since its last maximum advance (1871) is estimated to be 2.4 km3, which corresponds to a mean surface lowering of 0.67 m/year (referred to a total glacierized area of c. 40 km2 on average). The considerable slowing down of the glacier flow velocity over the 125 years is primarily attributable to the marked decrease in the sliding component, whereas the shear component has only changed slightly. This behaviour is connected with the fact that the decrease in ice thickness has been accompanied by an increase in surface slope, so that the two effects on the shear component partially compensate each other. The seasonal variations in surface velocity were measured simultaneously at two profiles by Agassiz and his team in 1845/46. These variations are due to the variable amount of melt water and the resulting variations in hydrostatic pressure in the contact zone between ice and bedrock, in which the plastic contraction of the water channels plays a decisive role. This leads to the problem of water circulation in the interior of a glacier and its importance in the sliding process. Finally a simple method for the approximate calculation of the longitudinal profile of the surface of a glacier tongue in a steady state and with constant ablation is indicated.


1982 ◽  
Vol 3 ◽  
pp. 346 ◽  
Author(s):  
N.W. Young ◽  
D. SheehY ◽  
T. Hamley

Trilateration and single line surveys have been made to about 900 km inland of Casey, Wilkes Land, to measure surface elevation, ice thickness, horizontal velocity, and other parameters. On the large scale the velocity U increases smoothly from 8 m a−1, 800 km inland, to 280 m a−1 inland of the fast outlet streams. This increase in velocity is associated with a corresponding increase in the large-scale smoothed (over about 30 ice thicknesses) basal shear stress τb from 0.4 to 1.5 bar. The mean shear strain-rate through the ice sheet U/Z = kτb4 , where Z is the ice thickness (range 4 500 to 1 700 m). At scales of one to several ice thicknesses large variations occur in surface slope and ice thickness without proportionally large velocity variations, because of the effect of the longitudinal stress. Detailed measurements made over a 30 km section indicated that the surface longitudinal strain-rate gradient varied from -1.7 to +1.3×l0−6 a−1 m−1 along with variations in surface slope of from -3.5 to +1.5%. A multilayer model, based on the solution of the biharmonic equation for the stream function, was used in a study of the ice flow associated with these surface undulations. Given the bedrock topography and large-scale flow parameters, the model closely predicted the measured surface profile when the variation of the surface accumulation rate over an undulation was also considered.


1970 ◽  
Vol 9 (56) ◽  
pp. 195-212 ◽  
Author(s):  
R. Haefeli

All the measurements involved concern the glacier tongue between its end and 2 600 m a.s.l. The total loss of volume of the Unteraargletscher since its last maximum advance (1871) is estimated to be 2.4 km3, which corresponds to a mean surface lowering of 0.67 m/year (referred to a total glacierized area ofc. 40 km2on average). The considerable slowing down of the glacier flow velocity over the 125 years is primarily attributable to the marked decrease in the sliding component, whereas the shear component has only changed slightly. This behaviour is connected with the fact that the decrease in ice thickness has been accompanied by an increase in surface slope, so that the two effects on the shear component partially compensate each other. The seasonal variations in surface velocity were measured simultaneously at two profiles by Agassiz and his team in 1845/46. These variations are due to the variable amount of melt water and the resulting variations in hydrostatic pressure in the contact zone between ice and bedrock, in which the plastic contraction of the water channels plays a decisive role. This leads to the problem of water circulation in the interior of a glacier and its importance in the sliding process. Finally a simple method for the approximate calculation of the longitudinal profile of the surface of a glacier tongue in a steady state and with constant ablation is indicated.


1982 ◽  
Vol 3 ◽  
pp. 36-41 ◽  
Author(s):  
W. F. Budd ◽  
M. J. Corry ◽  
T. H. Jacka

The major results from a comprehensive study of the Amery Ice Shelf are presented, following the work of a wintering expedition in 1968 and supplemented by further measurements during the summer seasons of 1969 to 1971. The Programme included ice-core drilling, oversnow surveys for ice movement and optical levelling, ice-thickness sounding, and measurements of snow accumulation. The new data obtained provide the basis for a more accurate assessment of the mass balance and dynamics of the ice shelf than was possible from the earlier surveys. The results indicate a substantial growth of basal ice under the ice shelf inland where the ice thickness is greater than 450 m. Further towards the ice front the high strain thinning is approximately balanced by the horizontal ice advection. The velocity distribution over the ice shelf is primarily governed by a substantial surface slope towards the ice front and high restraining shear stress along the sides.


Sign in / Sign up

Export Citation Format

Share Document