Early lymphocytic responses to Heligmosomoides polygyrus infections in mice

1990 ◽  
Vol 64 (1) ◽  
pp. 35-45 ◽  
Author(s):  
S. J. Parker ◽  
C. J. Inchley

ABSTRACTResponses to parasite antigens were studied in three strains of mice, BALB/c, CBA and NIH, during the initial phases of a primary infection with the intestinal nematode Heligmosomoides polygyrus. Changes in the rate of in vivo cell division were analysed in mesenteric lymph nodes and spleens during the phases of larval maturation and adult establishment, and related to changes in organ size and cellularity. The nature of the proliferating cell populations was also investigated by flow cytometry, carried out on cell suspensions prepared at the time when larval development was complete. The variation in the ability of the strains of mice to become resistant to a challenge infection was manifest as only slight differences in their initial responses to infection. All three strains showed an increase in 125I-iododeoxyuridine incorporation in their mesenteric lymph nodes and spleen, and an increase in B cell frequency over that of T cells in the draining lymph nodes. Although lymph node weight in NIH mice continued to rise over a 4 week period, the majority of responses measured were short lived, peaking 10 to 14 days after infection. The low responder status of CBA mice was thus reflected in a transient and relatively small enlargement of lymphoid tissues, but their early proliferative responses to antigen were similar in scale to those of responder strains.

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Emma C. Mackley ◽  
Stephanie Houston ◽  
Clare L. Marriott ◽  
Emily E. Halford ◽  
Beth Lucas ◽  
...  

Abstract Presentation of peptide:MHCII by RORγ-expressing group 3 innate lymphoid cells (ILC3s), which are enriched within gut tissue, is required for control of CD4 T-cell responses to commensal bacteria. It is not known whether ILC populations migrate from their mucosal and peripheral sites to local draining secondary lymphoid tissues. Here we demonstrate that ILC3s reside within the interfollicular areas of mucosal draining lymph nodes, forming a distinct microenvironment not observed in peripheral lymph nodes. By photoconverting intestinal cells in Kaede mice we reveal constitutive trafficking of ILCs from the intestine to the draining mesenteric lymph nodes, which specifically for the LTi-like ILC3s was CCR7-dependent. Thus, ILC populations traffic to draining lymph nodes using different mechanisms.


1984 ◽  
Vol 217 (1) ◽  
pp. 289-296 ◽  
Author(s):  
M S M Ardawi ◽  
E A Newsholme

Phosphate-dependent glutaminase was present at approximately similar activities in lymph nodes from mammals other than rat, and in thymus, spleen, Peyer's patches and bone marrow of the rat. This suggests that glutamine is important in all lymphoid tissues. Phosphate-dependent glutaminase activity was shown to be present primarily in the mitochondria of rat mesenteric lymph nodes, and most of the activity could be released by detergents. The properties of the enzyme in mitochondrial extracts were investigated. The pH optimum was 8.6 and the Km for glutamine was 2.0 mM. The enzyme was activated by phosphate, other phosphorylated compounds including phosphoenolpyruvate, and also leucine: 50% activation occurred at 5, 0.2 and 0.6 mM for phosphate, phosphoenolpyruvate and leucine respectively. The enzyme was inhibited by glutamate, 2-oxoglutarate, citrate and ammonia, and by N-ethylmaleimide and diazo-5-oxo-L-norleucine; 50% inhibition was observed at 0.7 and 0.1 mM for glutamate and 2-oxoglutarate respectively. Some of these properties may be important in the control of the enzyme activity in vivo.


2001 ◽  
Vol 82 (9) ◽  
pp. 2225-2234 ◽  
Author(s):  
Carmen Cantó-Nogués ◽  
Sue Jones ◽  
Rebecca Sangster ◽  
Peter Silvera ◽  
Robin Hull ◽  
...  

The distribution of virus-infected cells in cynomolgus macaques was determined at 4, 7, 14 and 28 days following intravenous challenge with 1000 TCID50 of the wild-type simian immunodeficiency virus SIVmacJ5 (stock J5C). At each time-point, pairs of macaques were killed humanely and the presence of SIV was determined and quantified in blood, spleen, peripheral and mesenteric lymph nodes, thymus, lung and ileum by virus co-cultivation with C8166 cells, by quantitative DNA PCR or by in situ hybridization (ISH). At day 4 post-infection (p.i.), detection of the virus was sporadic. By day 7 p.i., however, significant SIV loads were detected in the blood and lymphoid tissues by DNA PCR and virus co-cultivation. Large numbers of cells expressing SIV RNA were detected in mesenteric lymph nodes by ISH and significantly fewer (P<0·05) in the spleen. Significant numbers of ISH-positive cells were also observed in sections of ileum. By day 14 p.i., the distribution of SIV was more even in all lymphoid tissues analysed. By day 28, most of the tissues were negative by ISH, but all remained positive by virus isolation and DNA PCR. Immunolabelling of sections of mesenteric lymph node with monoclonal antibodies specific for SIV envelope and Nef largely confirmed the observations from ISH. These results indicate that, even following intravenous challenge, a major site of the initial replication of SIV is gut-associated lymphoid tissue. Vaccines that induce protection at this site may therefore be superior, even against parenteral challenge.


1983 ◽  
Vol 103 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Sadhana Chatterjee ◽  
Amar Singh Chandel

Abstract. In an attempt to find out the mechanism of immunomodulation by thyroid hormones (T3 and T4), their in vivo effect on the blastogenic response of lymphocytes from various lymphoid tissues of hormonetreated and thyroidectomized rats were studied. The blastogenic response of lymphocytes from thymus, peripheral blood and mesenteric lymph nodes to pokeweed mitogen (PWM) was found to be increased significantly following T3 or T4 administration for 15 days or 30 days. However, the response to phytohaemagglutinin (PHA) increased only after 1 month of T3 or T4 administration. The blastogenic response of spleen cells to both PHA and PWM was, on the other hand, found to be depressed following 15 days of hormone administration. Thyroidectomy invariably induced significant depression in the blastogenic response to both PHA and PWM in lymphocytes of all the lymphoid tissues. Thyroid hormone (T3) administration was found to restore the blastogenic response of the lymphocytes of thyroidectomized animals.


1985 ◽  
Vol 161 (3) ◽  
pp. 475-489 ◽  
Author(s):  
S H Lee ◽  
P M Starkey ◽  
S Gordon

We have estimated the macrophage content of different tissues of the normal adult mouse using F4/80, a highly specific antigen marker for mature mouse macrophages. An absorption indirect binding assay was used to quantitate F4/80 antigen against a calibration standard made from the J774.2 macrophage-like cell line. The richest sources of tissue F4/80 antigen were found to be bone marrow, spleen, cervical and mesenteric lymph nodes, large bowel, liver, kidneys, and small bowel. The organs that have the highest total F4/80 antigen content are the liver, large bowel, small bowel, bone marrow, spleen, cervical and mesenteric lymph nodes, and kidney. We conclude that the mononuclear phagocyte system is mainly distributed in the gastrointestinal tract and liver, followed by hemopoietic and lymphoid tissues.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2554-2565 ◽  
Author(s):  
S Baumhueter ◽  
N Dybdal ◽  
C Kyle ◽  
LA Lasky

Abstract Extravasation of leukocytes into organized lymphoid tissues and into sites of inflammation is critical to immune surveillance. Leukocyte migration to peripheral lymph nodes (PLN), mesenteric lymph nodes (MLN) and Peyer's patches (PP) depends on L-selectin, which recognizes carbohydrate-bearing, sialomucin-like endothelial cell surface glycoproteins. Two of these ligands have been identified at the molecular level. One is the potentially soluble mucin, GlyCAM 1, which is almost exclusively produced by high endothelial venules (HEV) of PLN and MLN. The second HEV ligand for L-selectin is the membrane-bound sialomucin CD34. Historically, this molecule has been successfully used to purify human pluripotent bone marrow stem cells, and limited data suggest that human CD34 is present on the vascular endothelium of several organs. Here we describe a comprehensive analysis of the vascular expression of CD34 in murine tissues using a highly specific antimurine CD34 polyclonal antibody. CD34 was detected on vessels in all organs examined and was expressed during pancreatic and skin inflammatory episodes. A subset of HEV-like vessels in the inflamed pancreas of nonobese diabetic (NOD) mice are positive for both CD34 and GlyCAM 1, and bind to an L-selectin/immunoglobulin G (IgG) chimeric probe. Finally, we found that CD34 is present on vessels of deafferentiated PLN, despite the fact that these vessels are no longer able to interact with L-selectin or support lymphocyte binding in vitro or trafficking in vivo. Our data suggest that the regulation of posttranslational carbohydrate modifications of CD34 is critical in determining its capability to act as an L-selectin ligand. Based on its ubiquitous expression, we propose that an appropriately glycosylated form of vascular CD34 may act as a ligand for L-selectin-mediated leukocyte trafficking to both lymphoid and nonlymphoid sites.


2002 ◽  
Vol 70 (12) ◽  
pp. 6788-6797 ◽  
Author(s):  
Susan M. Paulin ◽  
Patricia R. Watson ◽  
Annette R. Benmore ◽  
Mark P. Stevens ◽  
Philip W. Jones ◽  
...  

ABSTRACT Host and bacterial factors that determine whether Salmonella serotypes remain restricted to the gastrointestinal tract or penetrate beyond the mucosa and cause systemic disease remain largely undefined. Here, factors influencing Salmonella host specificity in calves were assessed by characterizing the pathogenesis of different serotypes. Salmonella enterica serotype Dublin was highly virulent intravenously, whereas S. enterica serotype Choleraesuis was moderately virulent. Both serotypes were virulent in calves infected orally. In contrast, S. enterica serotypes Gallinarum and Abortusovis were avirulent by either route. Serotypes Dublin, Gallinarum, and Abortusovis colonized the intestinal tract 24 h after oral inoculation, yet only serotype Dublin was consistently recovered from systemic tissues. Serotypes Dublin and Gallinarum invaded bovine intestines in greater numbers and induced greater enteropathogenic responses than serotypes Choleraesuis and Abortusovis. However, only serotype Dublin was able to persist within the intestinal mucosa, and use of a novel cannulation model demonstrated that serotype Dublin was able to pass through the mesenteric lymph nodes in greater numbers than serotype Gallinarum. Together, these results suggest that initial interactions with the intestinal mucosa do not correlate with host specificity, although persistence within tissues and translocation via efferent lymphatics appear to be crucial for the induction of bovine salmonellosis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2580-2580
Author(s):  
Xin Li ◽  
Wen Ling ◽  
Sharmin Khan ◽  
Yuping Wang ◽  
Angela Pennisi ◽  
...  

Abstract Abstract 2580 Intravenously administered mesenchymal stem cells (MSCs) are trapped in pulmonary vascular bed and only few MSCs home to bone or other tissues in physiological or pathological conditions. Following intracardiac injection MSCs pass the lung barrier but their homing to bone and tissue localization is uncertain. The aim of the study was to investigate trafficking and exact localization of human MSCs following intracardiac injection into unchallenged mice and a xenograft bone tumor model. MSCs were isolated from human fetal bones (ABR Inc, Alameda CA) and expanded in DMEM-LG medium supplemented with 10% FBS. Global gene expression profiling revealed that the cultured MSCs were devoid of hematopoietic cells and expressed typical mesenchymal markers such as CD166, CD146 and CD90. We have previously shown that these MSCs are capable of differentiation into osteoblasts and adipocytes and retain their differentiation potential after multiple passages (Haematologica 2006). The MSCs were transduced with a luciferase/GFP reporter in a lentiviral vector and were maximally passaged 8 times before used in vivo. Detection of MSCs in mice was determined by live-animal imaging and ex vivo bioluminescence activity using the IVIS system, by microscopic examination of GFP-expressing cells and by immunohistochemistry for GFP. MSCs (1×106 cells/mouse) were intracardiacly injected into unconditioned SCID mice (n=8) using Dovetail Slide Micromanipulator that ensures accurate injection. Following 2 or 7 days after MSC injection to SCID mice, live-animal imaging revealed bioluminescence activity mainly in the mice abdomen but not bone, while ex vivo examination detected MSCs in various abdominal organs, primarily in reproductive organs, intestine and pancreas. Careful microscopic examination revealed localization of MSCs in draining lymph nodes attached to these organs by connective tissue. Immunohistochemistry showed GFP-expressing MSCs in the adjacent mesenteric lymph nodes but not within the organs. To confirm our findings, MSCs were intracardially injected into C57BL6 mice (n=6) that harbor functional lymph nodes. Evans blue dye which is known to accumulate in and identify lymph nodes, was injected into the rear footpad or lateral tail base of the mice, 3 hours after MSC injection and 30 minutes prior to bioluminescence and florescence analyses. The Evans blue dye and GFP positivity were co-localized, indicating specific trafficking of MSCs to lymph nodes. Culturing of the dissected lymph nodes resulted in release of GFP-expressing MSCs which regained their in vitro morphology. For testing MSCs trafficking in a xenograft model, we used our SCID-rab system constructed by implanting a 4-weeks old rabbit bone into which human myeloma cells were directly injected (Leukemia 2004; Blood 2007). In this model myeloma cells grow restrictively in the implanted bone. MSCs injected intracardiacly into SCID-rab mice were mostly found in mesenteric lymph nodes but were also detected in the myelomatous bone 72 hours after MSCs injection, validating the ability of tumor cells to attract MSCs and that these MSCs are capable of transmigration. We conclude that MSCs primarily traffic to draining lymph nodes, partially explaining their in vivo immunomodulatory activity, and that understanding the mechanism by which MSCs traffic to lymph nodes may help develop approaches to shift their homing to desired organs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document