Effects of catechin polyphenols and preparations from the plant–parasitic nematode Heterodera glycines on protease activity and behaviour in three nematode species

2013 ◽  
Vol 88 (3) ◽  
pp. 349-356 ◽  
Author(s):  
E.P. Masler

AbstractProtease activities in preparations from the plant-parasitic nematodes Heterodera glycines and Meloidogyneincognita and the free-living nematode Panagrellus redivivus were inhibited by exposure to a series of eight catechin polyphenol analogues, (+)-catechin, ( − )-epicatechin (EC), ( − )-gallocatechin (GC), ( − )-epigallocatechin (EGC), ( − )-catechin gallate (CG), ( − )-gallocatechin gallate (GCG), ( − )-epicatechin gallate (ECG) and ( − )-epigallocatechin gallate (EGCG) (1 mm each), and by a preparation from H. glycines cysts. General protease activity detected with the FRET-peptide substrate QXL520-KSAYMRF-K(5-FAM)a and proteasome chymotrypsin-like (CTL) activity detected with succinyl-LLVY-AMC were each inhibited significantly more (P< 0.05) by the gallated form of the polyphenol than by the corresponding non-gallated form. Species differences in response to inhibition across all analogues were revealed with the CTL substrate, but CG was a consistently potent inhibitor across all three species and with each substrate. A heat-stable component (CE) from H. glycines cysts inhibited M. incognita CTL activity by 92.07 ± 0.68%, significantly less (P< 0.05) in H. glycines (52.86 ± 2.77%), and by only 17.24 ± 0.55% (P< 0.05) in P. redivivus preparations. CTL activity was, however, inhibited more than 60% in all preparations by the proteasome-specific inhibitor MG-132. Hatching of M. incognita infective juveniles exposed to 1 mm CG, ECG, GCG or EGCG was reduced by 83.88 ± 4.26%, 69.98 ± 9.14%, 94.93 ± 1.71% and 87.93 ± 2.89%, respectively, while hatching of H. glycines was reduced less than 25% by each analogue. CE had no effect on nematode hatch, but did cause a 60% reduction in mobility of H. glycines infective juveniles exposed overnight to CE in vitro, which was more (P< 0.05) than the reduction of M. incognita infective juvenile mobility (20%).

Nematology ◽  
2008 ◽  
Vol 10 (6) ◽  
pp. 911-917 ◽  
Author(s):  
Edward Masler

AbstractHatching and head movement behaviours of second-stage juvenile (J2) of two agriculturally important plant-parasitic nematodes were affected by the in vitro application of biogenic amines. The behavioural responses of Heterodera glycines and Meloidogyne incognita to treatments of serotonin, octopamine and dopamine were qualitatively similar, but significant quantitative differences between the species were revealed. The frequency of J2 head movement was decreased by as little as 250 μM serotonin in H. glycines and 500 μM serotonin in M. incognita, with effective doses (ED50) of 0.73 mM for H. glycines and 1.72 mM for M. incognita. Octopamine had the opposite effect of serotonin, increasing J2 head movement frequency at thresholds of 2 mM in H. glycines and 1 mM in M. incognita. Octopamine ED50 values were 32.35 mM and 1.91 mM, respectively. Dopamine had no effect on head movement in either species up to concentrations of 20 mM. Serotonin inhibited hatch in both species but was more potent against H. glycines (90% inhibition at 1 mM) than M. incognita (40% inhibition at 5 mM). Octopamine reduced hatch equally in both species with over 95% inhibition at 80 mM. Dopamine had no effect on hatch in M. incognita but did inhibit H. glycines hatch over 60% at 40 mM. The value of detailed quantitative analyses of plant-parasitic nematode responses to biogenic amines for studies on nematode control is discussed.


2012 ◽  
Vol 87 (1) ◽  
pp. 71-77 ◽  
Author(s):  
E.P. Masler

AbstractProteolytic activities in extracts from the plant-parasitic nematodes Heterodera glycines and Meloidogyneincognita were examined for their abilities to digest three FRET-modified peptide substrates representing members of the large FMRFamide-like peptide (FLP) family in nematodes. Included were sequences distributed across all nematode species (KSAYMRFa and KHEYLRFa) and a sequence confined to a narrow range of plant-parasitic nematodes (KHEFVRFa). Species variations were observed among substrate affinities, reaction rates and effect of protease inhibitors. Km values for KHEYLRFa (1.48 ± 0.34 μm) and KSAYMRFa (2.13 ± 0.24 μm) in H. glycines were each lower (P< 0.05) than those for the same substrates in M. incognita (5.26 ± 1.30 μm and 3.90 ± 0.61 μm, respectively). The Km of KHEFVRFa was lower (P< 0.05) in M. incognita (5.83 ± 0.36 μm) than in H. glycines (11.01 ± 1.26 μm). Reaction rates (Vmax/min/μg) for KHEYLRFa were the same for both species, but KSAYMRFa and KHEFVRFa digestion rates were each nearly twofold higher (P< 0.05) in M. incognita than in H. glycines. Digestion of KSAYMRFa was strongly inhibited in both species by 4-(2-aminoethyl)-benzenesulfonyl-fluoride-HCl (AEBSF) and EDTA, but M. incognita was more sensitive (P< 0.05) to inhibition. AEBSF and EDTA (both at 1 mm) inhibited M. incognita activity 62.3% and 36.6% more, respectively, than H. glycines activity. Serine protease inhibition differed significantly (P< 0.05) between the two species. Maximum inhibition of M. incognita (76%) occurred at 1.85 mm AEBSF while maximum inhibition of H. glycines was 40% at 1.19 mm AEBSF.


Parasitology ◽  
2007 ◽  
Vol 134 (12) ◽  
pp. 1831-1838 ◽  
Author(s):  
G. STEPEK ◽  
R. H. C. CURTIS ◽  
B. R. KERRY ◽  
P. R. SHEWRY ◽  
S. J. CLARK ◽  
...  

SUMMARYCysteine proteinases from the fruit and latex of plants, such as papaya, pineapple and fig, have previously been shown to have substantial anthelmintic efficacy, in vitro and in vivo, against a range of animal parasitic nematodes. In this paper, we describe the in vitro effects of these plant extracts against 2 sedentary plant parasitic nematodes of the genera Meloidogyne and Globodera. All the plant extracts examined caused digestion of the cuticle and decreased the activity of the tested nematodes. The specific inhibitor of cysteine proteinases, E-64, blocked this activity completely, indicating that it was essentially mediated by cysteine proteinases. In vitro, plant cysteine proteinases are active against second-stage juveniles of M. incognita and M. javanica, and some cysteine proteinases also affect the second-stage juveniles of Globodera rostochiensis. It is not known yet whether these plant extracts will interfere with, or prevent invasion of, host plants.


2009 ◽  
Vol 99 (12) ◽  
pp. 1336-1345 ◽  
Author(s):  
A. A. Bacetty ◽  
M. E. Snook ◽  
A. E. Glenn ◽  
J. P. Noe ◽  
N. Hill ◽  
...  

Neotyphodium coenophialum, an endophytic fungus associated with tall fescue grass, enhances host fitness and imparts pest resistance. This symbiotum is implicated in the reduction of stresses, including plant-parasitic nematodes. To substantiate this implication, toxicological effects of root extracts, polyphenolic fraction, ergot, and loline alkaloids from endophyte-infected tall fescue were investigated using Pratylenchus scribneri, a nematode pest of tall fescue. In vitro bioassays and greenhouse studies were used as tests for effects of root fractions and compounds on motility and mortality of this lesion nematode. Greenhouse studies revealed that endophyte-infected tall fescue grasses are essentially nonhosts to P. scribneri, with root populations averaging 3 to 17 nematodes/pot, compared with 4,866 and 8,450 nematodes/pot for noninfected grasses. The in vitro assay indicated that root extracts from infected tall fescues were nematistatic. Polyphenols identified in extracts included chlorogenic acid, 3,5-dicaffeoylquinic acids, caffeic acid, and two unidentified compounds, but these were not correlated with endophyte status, qualitatively or quantitatively. Tests of several ergot alkaloids revealed that ergovaline and α-ergocryptine were nematicidal at 5 and 50 μg/ml, respectively, while ergocornine and ergonovine were nematistatic at most concentrations. Loline (N-formylloline), the pyrrolizidine alkaloid tested, was nematicidal (50 to 200 μg/ml). The ecological benefits of the metabolites tested here should assist in defining their role in deterring this nematode species while offering some probable mechanisms of action against plant-parasitic nematodes in general.


Plant Disease ◽  
2008 ◽  
Vol 92 (11) ◽  
pp. 1480-1487 ◽  
Author(s):  
Guiping Yan ◽  
Richard W. Smiley ◽  
Patricia A. Okubara ◽  
Andrea Skantar ◽  
Sandra A. Easley ◽  
...  

A species-specific polymerase chain reaction (PCR) method was developed to detect and identify the root-lesion nematodes Pratylenchus neglectus and P. thornei from soil. A primer set was designed from Pratylenchus 28S rRNA gene sequences of the D3 expansion domain. Primer specificity was confirmed with 23 isolates of 15 nematode species and other plant-parasitic and non-plant-parasitic nematodes typically present in the soil communities, and with six fungal species commonly associated with wheat root rot. DNA obtained using a commercially available kit and a method developed in our laboratory gave comparable amplification. PCR conditions were optimized and the two species were differentiated by PCR products of 144 bp for P. neglectus and 288 bp for P. thornei. With this assay, we detected a single juvenile in 1 g of sterile, inoculated soil. Examination of 30 field soil samples revealed that this method was applicable to a range of soils naturally infested with these two pathogens in Oregon. This PCR-based method is rapid, efficient, and reliable, does not require expertise in nematode taxonomy and morphology, and could be used as a rapid diagnostic tool for commercial and research applications for disease forecasting and management.


Nematology ◽  
2020 ◽  
pp. 1-17 ◽  
Author(s):  
Tim C. Thoden ◽  
Mariam A. Alkader ◽  
John A. Wiles

Summary Currently a renaissance in chemical nematicides is taking place with novel products like Nimitz® (a.s. fluensulfone), Velum Prime® (a.s. fluopyram) and Salibro™ (a.s. fluazaindolizine – Reklemel™ active) entering the marketplace. Although a considerable amount of published data is already available on their laboratory and field impact on plant-parasitic nematodes, little is understood of their compatibility with the beneficial or free-living nematodes that are part of the soil health network. In a range of laboratory studies, the effects of these nematicides on the vitality and reproduction of several species was tested, including both cosmopolitan free-living nematodes (Acrobeloides, Cruznema, Panagrobelus) as well as commercially applied entomopathogenic nematodes (Steinernema, Heterorhabditis). Within aqueous exposure and agar plate in vitro assays, species sensitivity to those nematicides differed significantly but their fitness (vitality and reproduction; infectivity to insect hosts) was generally not adversely impacted by concentrations of 5-50 ppm (a.s.) of Salibro. Even at 250 ppm (a.s.) of Salibro only some species of the bacterial-feeding species showed some negative impact. By contrast, both Nimitz at 50 ppm (a.s.) and Velum at 5 ppm (a.s.) consistently demonstrated stronger adverse impacts. In second level soil drenching assays, either no, or occasionally slight, adverse effects on the natural community of free-living nematodes were observed if soils were drenched with different volumes of Salibro at 5-50 ppm (a.s.), while relatively stronger reductions were measured within the plant-parasitic species (especially root-knot nematodes). Both Nimitz and Vydate (a.s. oxamyl) showed some degree of compatibility at 5 and 25 ppm (a.s.), respectively, which was generally higher than for Velum Prime at 5 ppm (a.s.). Overall, these data indicate that, when used at common field rates, Salibro will be one of the best options as part of integrated nematode management programmes where the use of chemical nematicides is required.


2020 ◽  
Vol 110 (12) ◽  
pp. 2003-2009
Author(s):  
Catherine L. Wram ◽  
Inga Zasada

This research focused on the effects of fluazaindolizine on a diversity of plant-parasitic nematodes. In microwell assays, 24-h dose-response curves were generated for several species and populations of Meloidogyne, Pratylenchus neglectus, P. penetrans, Globodera ellingtonae, and Xiphinema americanum. In a greenhouse study, the impact of fluazaindolizine on fecundity of M. incognita, M. hapla, and M. chitwoodi was tested by exposing nematodes for 24 h in solution and inoculating on tomato. The average 24-h ED50s (dose that resulted in the immobility of 50% of exposed nematodes) for M. hapla, M. chitwoodi, and M. incognita were 325.7, 223.4, and 100.7 ppm, respectively. M. hapla had the most variation among populations, with 24-h ED50s ranging from 72 to 788 ppm. G. ellingtonae had the lowest 24-h ED50 at 30 ppm. Pratylenchus spp. were unaffected by fluazaindolizine. X. americanum was the only species where effects of fluazaindolizine were reversible, but had a 24-h ED50 that fell in the range of the Meloidogyne spp. In the greenhouse study, M. chitwoodi was the least sensitive with reproduction reaching 62% of the untreated control after a pre-exposure to 47 ppm, whereas M. incognita and M. hapla at the same exposure dose had reproduction rates of 27 and 36% of the untreated control, respectively. Despite varying in in vitro responses to fluazaindolizine, reproduction of all Meloidogyne spp. was suppressed after only 24 h of exposure. This study expanded our understanding of how G. ellingtonae, P. thornei, P. penetrans, and X. americanum respond to fluazaindolizine.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 443 ◽  
Author(s):  
Trifone D’Addabbo ◽  
Maria Pia Argentieri ◽  
Jerzy Żuchowski ◽  
Elisa Biazzi ◽  
Aldo Tava ◽  
...  

Content of bioactive saponins of Medicago species suggests that they may also exert, as previously demonstrated on M. sativa, nematicidal properties exploitable for the formulation of new products for sustainable phytoparasitic nematode management. This study was addressed to highlight the bioactivity of saponins from five different Medicago species still poorly known for their biological efficacy, i.e., M. heyniana, M. hybrida, M. lupulina, M. murex and M. truncatula, against the plant parasitic nematodes Meloidogyne incognita, Xiphinema index and Globodera rostochiensis. The bioactivity of the extracts from the five Medicago species was assessed by in vitro assays on the juveniles (J2) and eggs of M. incognita and G. rostochiensis and the adult females of X. index. The suppressiveness to M. incognita of soil treatments with the Medicago plant biomasses was also investigated in a tomato experiment. The nematicidal activity of the five Medicago species was reported and discussed in relation to their phytochemical profile.


Parasitology ◽  
2006 ◽  
Vol 132 (4) ◽  
pp. 545-554 ◽  
Author(s):  
D. BAHUAUD ◽  
C. MARTINEZ-ORTIZ DE MONTELLANO ◽  
S. CHAUVEAU ◽  
F. PREVOT ◽  
F. TORRES-ACOSTA ◽  
...  

The anthelmintic properties of tanniferous plants and of their secondary metabolites represent one possible alternative to chemotherapy that is currently being explored as a means of achieving sustainable control of gastrointestinal nematodes in ruminants. Previousin vivoandin vitroresults suggest that tanniferous plants can have direct anti-parasitic effect against different stages of nematodes. However, the mode of action of the bioactive plant compounds remains obscure. The objectives of the current study were (1) to examine the hypothesis that extracts of tanniferous plants might interfere with the exsheathment of third-stage infective larvae (L3); (2) to assess the role of tannins in the process by examining the consequence of adding an inhibitor of tannins (polyethylene glycol: PEG) to extracts. The effects of 4 tanniferous plant extracts on exsheathment have been examined on L3 ofHaemonchus contortusandTrichostrongylus colubriformis. Artificial exsheathment was inducedin vitroby adding hypochloride solution to larval suspension. The evolution of exsheathment with time was measured by repeated observations at 10-min interval for 60 min. The selected plants were: genista (Sarothamnus scoparius), heather (Erica erigena), pine tree (Pinus sylvestris), and chestnut tree (Castanea sativa), with tannin contents ranging from 1·5 to 24·7% of DM. Extracts of a non-tanniferous plant (rye grass, tannin content: 0·3% of DM) were included in the assay as negative controls. The extracts were tested at the concentration of 600 μg/ml and the effects were compared to the rate of exsheathment of control larvae in PBS. No statistical differences in the pattern of exsheathment was observed after addition of rye grass or genista extracts for both nematode species and with heather extracts forT. colubriformis. In contrast, pine tree extracts on larvae of both species and heather extracts withH. contortusinduced a significant delay in exsheathment. Last, contact with chest nut extracts led to a total inhibition of the process for both nematodes. These results suggest that extracts of tanniferous plants might affect a key process in the very early stages of larval invasion of the host. In most cases, the addition of PEG led to a total or partial restoration towards control values. This suggests that tannins are largely involved in the inhibitory process. However, other secondary metabolites may also interfere with the process that would help to explain some of the differences in response observed between the two nematode species.


2016 ◽  
Vol 10 (1) ◽  
pp. 10-14
Author(s):  
Arvind K. Keshari ◽  
Ranjana Gupta

During a survey for plant parasitic nematodes affecting various vegetable crops grown in three hilly districts surrounding Kathmandu Valley, Nepal, five species of order Tylenchidae are reported for the first time from Nepal.The nematode species are Hoplolaimus indicus, Tylenchorhynchus mashhoodi, Helicotylenchus incisus, Microposthonia paraxestis and Hemicriconemoides cocophilus.All the species are illustrated with line diagrams and described with their morphometric data along with localities and host plants.International Journal of Life Sciences 10 (1) : 2016; 10-16


Sign in / Sign up

Export Citation Format

Share Document