Description of Metagonimus pusillus sp. nov. (Trematoda: Heterophyidae): phylogenetic relationships within the genus

2017 ◽  
Vol 92 (6) ◽  
pp. 703-712 ◽  
Author(s):  
Y.V. Tatonova ◽  
P.G. Shumenko ◽  
V.V. Besprozvannykh

AbstractAs a result of experimental studies conducted in the Russian southern Far East, adult worms from the genus Metagonimus were obtained. A comparative analysis of the morphometry of these worms with other Metagonimus representatives showed that they are most similar to M. katsuradai Izumi, 1935 and M. otsurui Shimazu & Urabe, 2002 found in Japan, due to the ratio of suckers and the positions of the testicle, uterus and vitellaria. However, Russian worms differ from species in Japan by other metric characters: they differ from M. otsurui by the maximum size of most organs and from M. katsuradai by body width, pharynx length, and maximum size of testes and ovary. At the same time, they are identical to a trematode from the Russian southern Far East, which was previously identified as M. katsuradai. The validity of this species was also confirmed by genetic data. According to the 28S gene and the internal transcribed spacer 2 (ITS2) region of rDNA, as well as the cytochrome c oxidase I (cox1) gene of mtDNA, the Metagonimus specimens found in Russia differ from published genetic data for other members of this genus. However, both morphological similarity and molecular data showed that M. pusillus sp. nov., M. katsuradai and M. otsurui are most likely cryptic species. Furthermore, additional data based on a mitochondrial marker were provided for M. suifunensis Shumenko, Tatonova & Besprozvannykh, 2017 from Russia.

Parasitology ◽  
2020 ◽  
Vol 147 (13) ◽  
pp. 1469-1479
Author(s):  
Y. V. Tatonova ◽  
A. V. Izrailskaia ◽  
V. V. Besprozvannykh

AbstractMature worms of Stephanoprora amurensis sp. nov. were obtained in an experimental study of its life cycle. In the Russian southern Far East, this trematode circulates using freshwater snails Parajuga subtegulata, freshwater fish and birds as the first, second intermediate and final hosts, respectively. Stephanoprora amurensis sp. nov. differs from the well-known representatives of Stephanoprora in a number of morphometric indicators of the developmental stages. The validity of the species was also confirmed by nuclear and mitochondrial DNA markers. In addition, new genetic data were obtained for Echinochasmus suifunensis and Echinochasmus milvi. An analysis of phylogenetic relationships within Echinochasmidae based on the 28S rRNA gene and ITS2 region identified two clusters, one of which combines species of Echinochasmus with 20–22 collar spines and short-tailed cercariae, and the other which includes Stephanoprora spp. and a number of representatives of Echinochasmus with 24 collar spines and long-tailed cercariae. The results of phylogenetic analysis based on ITS2 data show interfamily level of differences between the two clusters and intergeneric differentiation between the three subclusters uniting the species of Stephanoprora and Echinochasmus.


2017 ◽  
Vol 92 (6) ◽  
pp. 713-724 ◽  
Author(s):  
V.V. Besprozvannykh ◽  
D.M. Atopkin ◽  
H.D. Ngo ◽  
N.V. Ha ◽  
N.V. Tang ◽  
...  

AbstractAdults of Skrjabinolecithum spinosum n. sp. were discovered in Mugil cephalus from the Gulf of Peter the Great in southern Far-East Russia. Additionally, adults of Unisaccus tonkini n. sp. were found in the intestine of Moolgarda cunnesius and Moolgarda seheli from the coastal waters of Cat Ba Island, Tonkin Bay, northern Vietnam. Skrjabinolecithum spinosum n. sp. possesses a larger body, and ventral and oral sucker size in comparison with Skrjabinolecithum vitellosum, a smaller pharynx size and body length/width rate ratio in comparison to Skrjabinolecithum pyriforme, a smaller body length and prepharynx size in comparison to Skrjabinolecithum lobolecitum and a smaller pharynx length and egg size in comparison to Skrjabinolecithum indicum and S. lobolecitum. The new species also differs from S. indicum, S. lobolecitum and S. vitellosum by the form of the testis, and from the last two species by the presence of a two-branched intestine. The morphometric parameters of S. spinosum n. sp. are similar to those of Skrjabinolecithum spasskii. However, S. spinosum n. sp., unlike S. spasskii, has an armed hermaphroditic duct. Unisaccus tonkini n. sp. is similar to Unisaccus spinosus (Martin, 1973), Unisaccus brisbanensis (Martin, 1973) and Unisaccus overstreeti (Ahmad, 1987) in body size but differs in oral sucker, pharynx and hermaphroditic sac size from U. spinosus, and in ventral sucker and ovary size from U. brisbanensis and U. overstreeti. Bayesian phylogenetic analysis, based on combined data of internal transcribed spacer 2 (ITS2) and partial 28S rRNA gene sequences, confirmed the validity of S. spinosum n. sp. and U. tonkini n. sp. Analysis of interrelationships of the family Haploporidae, including molecular data on new species, showed that the Waretrematinae subfamily is more heterogeneous in comparison with Haploporinae and Forticulcitinae, and includes U. tonkini n. sp.


2015 ◽  
Vol 90 (2) ◽  
pp. 238-244 ◽  
Author(s):  
V.V. Besprozvannykh ◽  
D.M. Atopkin ◽  
H.D. Ngo ◽  
A.V. Ermolenko ◽  
N.V. Ha ◽  
...  

AbstractAdults of Haplosplanchnus pachysomus (Eysenhardt, 1829) were found in the intestine of Liza engeli (Bleeker) from the coastal waters of Cat Ba Island, Ha Long Bay, northern Vietnam. Additionally, Provitellotrema crenimugilis Pan, 1984 was discovered in Liza haematocheila (Temminck & Schlegel) from Vostok Bay, Gulf of Peter the Great, southern Far-East Russia. Data concerning morphology, 18S rDNA and 28S rDNA of these worms were obtained.The molecular data confirmed the validity of these species and showed that specimens identified as H. pachysomus are closely related to specimens of H. pachysomus found in Spain, and that P. crenimugilis is closely related to Haplosplanchnus purii. Molecular differentiation of P. crenimugilis and H. purii was 0.92% by combined ribosomal gene sequences that confirmed species validity. Molecular differentiation between P. crenimugilis and H. purii, on the one hand, and H. pachysomus, on the other hand, was much higher, suggesting that the sequence for H. purii in GenBank is for a misidentified species of the genus Provitellotrema Pan, 1984.


Neurology ◽  
2017 ◽  
Vol 89 (12) ◽  
pp. 1210-1219 ◽  
Author(s):  
Yue-Hua Zhang ◽  
Rosemary Burgess ◽  
Jodie P. Malone ◽  
Georgie C. Glubb ◽  
Katherine L. Helbig ◽  
...  

Objective:Following our original description of generalized epilepsy with febrile seizures plus (GEFS+) in 1997, we analyze the phenotypic spectrum in 409 affected individuals in 60 families (31 new families) and expand the GEFS+ spectrum.Methods:We performed detailed electroclinical phenotyping on all available affected family members. Genetic analysis of known GEFS+ genes was carried out where possible. We compared our phenotypic and genetic data to those published in the literature over the last 19 years.Results:We identified new phenotypes within the GEFS+ spectrum: focal seizures without preceding febrile seizures (16/409 [4%]), classic genetic generalized epilepsies (22/409 [5%]), and afebrile generalized tonic-clonic seizures (9/409 [2%]). Febrile seizures remains the most frequent phenotype in GEFS+ (178/409 [44%]), followed by febrile seizures plus (111/409 [27%]). One third (50/163 [31%]) of GEFS+ families tested have a pathogenic variant in a known GEFS+ gene.Conclusion:As 37/409 (9%) affected individuals have focal epilepsies, we suggest that GEFS+ be renamed genetic epilepsy with febrile seizures plus rather than generalized epilepsy with febrile seizures plus. The phenotypic overlap between GEFS+ and the classic generalized epilepsies is considerably greater than first thought. The clinical and molecular data suggest that the 2 major groups of generalized epilepsies share genetic determinants.


2018 ◽  
Vol 51 (10) ◽  
pp. 1164-1171 ◽  
Author(s):  
A. V. Ivanov ◽  
M. Braun ◽  
D. G. Zamolodchikov ◽  
D. V. Lynov ◽  
E. V. Panfilova

Author(s):  
Yosef D. Roth ◽  
Zhouyang Lian ◽  
Saahith Pochiraju ◽  
Bilal Shaikh ◽  
Jonathan R. Karr

AbstractIntegrative research about multiple biochemical subsystems has significant potential to help advance biology, bioengineering, and medicine. However, it is difficult to obtain the diverse data needed for integrative research. To facilitate biochemical research, we developed Datanator (https://datanator.info), an integrated database and set of tools for finding clouds of multiple types of molecular data about specific molecules and reactions in specific organisms and environments, as well as data about chemically-similar molecules and reactions in phylogenetically-similar organisms in similar environments. Currently, Datanator includes metabolite concentrations, RNA modifications and half-lives, protein abundances and modifications, and reaction rate constants about a broad range of organisms. Going forward, we aim to launch a community initiative to curate additional data. Datanator also provides tools for filtering, visualizing, and exporting these data clouds. We believe that Datanator can facilitate a wide range of research from integrative mechanistic models, such as whole-cell models, to comparative data-driven analyses of multiple organisms.


Author(s):  
О. V. Popova

The pre-emptive right to purchase and sell agricultural land by the authorities of the constituent entities of the Russian Federation, the maximum size of agricultural land plots, the allocation of shares among rural residents and some other features of agricultural legislation are restrictions on the realization of the right of rural residents to own land. The lack of adequate infrastructure in rural areas, especially in the Far East that fall under the Far Eastern Hectare project, is also seen as an obstacle for rural residents to exercise their right to land.


2018 ◽  
Vol 32 (1) ◽  
pp. 196 ◽  
Author(s):  
Adnan Shahdadi ◽  
Peter J. F. Davie ◽  
Christoph D. Schubart

Parasesarma semperi (Bürger, 1893) was first described from Bohol in the Philippines and is considered to be widely distributed in Southeast Asia. Parasesarma longicristatum (Campbell, 1967) was originally described as a subspecies of P. semperi from Queensland, Australia, and later recognised as a full species. In this study, we re-examine specimens of the two species from across their entire geographic range using genetic markers, a morphometric analysis, and traditional morphological characters. Previous taxonomic species diagnoses were found to be unreliable, but morphometric principle component analyses consistently separate the two species, with the length to width ratio of the propodus of the fourth pereiopod being of particular importance. Genetic data corresponding to the mitochondrial genes COI, ND1 and 16S confirmed a close sister relationship between the two species, forming reciprocally monophyletic groups. Both species have high haplotype diversities and high intraspecific gene flow.


Sign in / Sign up

Export Citation Format

Share Document