New data on life cycles for three species of Fellodistomidae (Digenea) in the White Sea

2020 ◽  
Vol 94 ◽  
Author(s):  
D. Krupenko ◽  
A. Uryadova ◽  
A. Gonchar ◽  
G. Kremnev ◽  
V. Krapivin

Abstract Few digeneans of the family Fellodistomidae are known from the Russian Arctic seas. The taxonomic status of these species, their life cycles and host range raised recurrent questions, some of which remain unanswered. To revise the species composition and life cycles of fellodistomids in the White Sea, we searched for them in several known and suspected hosts: wolffish, flatfishes (definitive), gastropods of the family Buccinidae (second intermediate) and protobranch bivalves (first intermediate). Species identification was based both on morphology and 28S ribosomal RNA gene sequences. We found Fellodistomum agnotum in the White Sea for the first time. Buccinum undatum was proved to be intermediate host of both F. agnotum and Fellodistomum fellis, and metacercariae of F. fellis were registered from two more buccinid species: Buccinum scalariforme and Neptunea despecta. We also found metacercariae of F. agnotum and F. fellis producing eggs in the second intermediate host. Two fellodistomids were found in protobranch bivalves: sporocysts and cercariae of Steringophorus furciger in Nuculana pernula, and sporocysts with large furcocercous cercariae in Ennucula tenuis. The latter were identified as F. agnotum by molecular analysis; thus, the entire life cycle of this species was reconstructed.

2005 ◽  
Vol 14 (1) ◽  
pp. 1-16
Author(s):  
S.V. Kovalyev ◽  
A.V. Tchesunov

Taxonomic problems in the family Microlaimidae are discussed, and a key to the genera of Microlaimidae is given. Five species of Microlaimus are recorded from the White Sea for the first time. Microlaimus paraconothelis sp. n. is described from the White Sea.


Diversity ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 93 ◽  
Author(s):  
Tatiana A. Belevich ◽  
Ludmila V. Ilyash ◽  
Irina A. Milyutina ◽  
Maria D. Logacheva ◽  
Aleksey V. Troitsky

The White Sea is a unique basin combining features of temperate and arctic seas. The current state of its biocenoses can serve as a reference point in assessing the expected desalination of the ocean as a result of climate change. A metagenomic study of under-ice ice photosynthetic picoeukaryotes (PPEs) was undertaken by Illumina high-throughput sequencing of the 18S rDNA V4 region from probes collected in March 2013 and 2014. The PPE biomass in samples was 0.03–0.17 µg C·L−1 and their abundance varied from 10 cells·mL−1 to 140 cells·mL−1. There were representatives of 16 algae genera from seven classes and three supergroups, but Chlorophyta, especially Mamiellophyceae, dominated. The most represented genera were Micromonas and Mantoniella. For the first time, the predominance of Mantoniella (in four samples) and Bolidophyceae (in one sample) was observed in under-ice water. It can be assumed that a change in environmental conditions will lead to a considerable change in the structure of arctic PPE communities.


2021 ◽  
Vol 7 (6) ◽  
pp. 478
Author(s):  
Xue-Wei Wang ◽  
Tom W. May ◽  
Shi-Liang Liu ◽  
Li-Wei Zhou

Hyphodontia sensu lato, belonging to Hymenochaetales, accommodates corticioid wood-inhabiting basidiomycetous fungi with resupinate basidiocarps and diverse hymenophoral characters. Species diversity of Hyphodontia sensu lato has been extensively explored worldwide, but in previous studies the six accepted genera in Hyphodontia sensu lato, viz. Fasciodontia, Hastodontia, Hyphodontia, Kneiffiella, Lyomyces and Xylodon were not all strongly supported from a phylogenetic perspective. Moreover, the relationships among these six genera in Hyphodontia sensu lato and other lineages within Hymenochaetales are not clear. In this study, we performed comprehensive phylogenetic analyses on the basis of multiple loci. For the first time, the independence of each of the six genera receives strong phylogenetic support. The six genera are separated in four clades within Hymenochaetales: Fasciodontia, Lyomyces and Xylodon are accepted as members of a previously known family Schizoporaceae, Kneiffiella and Hyphodontia are, respectively, placed in two monotypic families, viz. a previous name Chaetoporellaceae and a newly introduced name Hyphodontiaceae, and Hastodontia is considered to be a genus with an uncertain taxonomic position at the family rank within Hymenochaetales. The three families emerged between 61.51 and 195.87 million years ago. Compared to other families in the Hymenochaetales, these ages are more or less similar to those of Coltriciaceae, Hymenochaetaceae and Oxyporaceae, but much older than those of the two families Neoantrodiellaceae and Nigrofomitaceae. In regard to species, two, one, three and 10 species are newly described from Hyphodontia, Kneiffiella, Lyomyces and Xylodon, respectively. The taxonomic status of additional 30 species names from these four genera is briefly discussed; an epitype is designated for X. australis. The resupinate habit and poroid hymenophoral configuration were evaluated as the ancestral state of basidiocarps within Hymenochaetales. The resupinate habit mainly remains, while the hymenophoral configuration mainly evolves to the grandinioid-odontioid state and also back to the poroid state at the family level. Generally, a taxonomic framework for Hymenochaetales with an emphasis on members belonging to Hyphodontia sensu lato is constructed, and trait evolution of basidiocarps within Hymenochaetales is revealed accordingly.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249673
Author(s):  
Sara Sario ◽  
Conceição Santos ◽  
Fátima Gonçalves ◽  
Laura Torres

Drosophila suzukii (spotted wing drosophila, SWD) is a pandemic quarantine pest that attacks mostly red fruits. The high number of life cycles per year, its ability to rapidly invade and spread across new habitats, and highly polyphagous nature, makes this a particularly aggressive invasive species, for which efficient control methods are currently lacking. The use of native natural predators is particularly promising to anchor sustainable and efficient measures to control SWD. While several field studies have suggested the presence of potential predatory species in infested orchards, only a few confirmed the presence of SWD DNA in predators’ gut content. Here, we use a DNA-based approach to identify SWD predators among the arthropod diversity in South Europe, by examining the gut content of potential predator specimens collected in SWD-infested berry fields in North Portugal. These specimens were morphologically identified to the family/order, and their gut content was screened for the presence of SWD DNA using PCR. New SWD predatory taxonomical groups were identified, as Opiliones and Hemerobiidae, in addition to known SWD predators, such as Hemerobiidae, Chrysopidae, Miridae, Carabidae, Formicidae and Araneae. Additionally, the presence of a spider family, Uloboridae, in the orchards was recorded for the first time, posing this family as another SWD-candidate predator. This study sets important bases to further investigate the potential large-scale use of some of these confirmed predator taxa for SWD control in South Europe.


Author(s):  
Chelladurai Stella ◽  
Packiam Paul ◽  
Chelladurai Ragunathan

The new occurrence of Three species of bivalves from Pinnidae family  is recorded for the first time from Palk Bay area based on a live and dead shells collected from the Intertidal area . All the three species are under the family of  Pinnidae, Pinna bicolor, Pinna deltodes and Pinna incurva . In seagrass bed of Thondi Coast, all the species of Pen shells Pinna bicolor, Pinna deltodes and Pinna incurva  were embedded in muddy sand and found associated with seagrasses at inter-tidal area. It was also found buried in hard substratum associated with living zoanthids and soft coral. The collected specimens were identified as, (1) Pinna bicolor, (2) Pinna deltodes and (3) Pinna Incurva by using both morphometric and meristic characters. The paper described the taxonomic status and the description of the three species of bivalves collected from Palk Bay areas.


2021 ◽  
Vol 30 (2) ◽  
pp. 236-247
Author(s):  
N.Yu. Ivanova

New genus and species of burrowing sea anemones of the family Halcampidae, Gorgonactis marisalbi gen. et sp. nov., are described from the White Sea (Chupa Bay). The new taxa are characterised by unique characters not found in other members of this family: a simple, strong marginal sphincter, very long tentacles and their large spirocysts.


1999 ◽  
Vol 73 (1) ◽  
pp. 1-19 ◽  
Author(s):  
T. Scholz

The life cycles of species of Proteocephalus Weinland, 1858 (Cestoda: Proteocephalidea) parasitizing fishes in the Palearctic Region are reviewed on the basis of literary data and personal experimental observations, with special attention being paid to the development within the intermediate and definitive hosts. Planktonic crustaceans, diaptomid or cyclopid copepods (Copepoda), serve as the only intermediate hosts of all Proteocephalus species considered. A metacestode, or procercoid, develops in the body cavity of these planktonic crustaceans and the definitive host, a fish, becomes infected directly after consuming them. No previous reports of the parenteral location of metacestodes within the second intermediate host as it is in the Nearctic species P. ambloplitis have been recorded. Thus, the life cycles of Proteocephalus tapeworms resemble in their general patterns those of some pseudophyllidean cestodes such as Eubothrium or Bothriocephalus, differing from the latter in the presence of a floating eggs instead of possessing an operculate egg from which a ciliated, freely swimming larva, a coracidium, is liberated. The scolex of Proteocephalus is already formed at the stage of the procercoid within the copepod intermediate host; in this feature, proteocephalideans resemble caryophyllidean rather than pseudophyllidean cestodes. The morphology of procercoids of individual species is described with respect to the possibility of their differentiation and data on the spectrum of intermediate hosts are summarized. Procercoids of most taxa have a cercomer, which does not contain embryonic hooks in contrast to most pseudophyllidean cestodes. The role of invertebrates (alder-fly larvae — Megaloptera) and small prey fishes feeding upon plankton in the transmission of Proteocephalus tapeworms still remains unclear but these hosts are likely to occur in the life cycle. Data on the establishment of procercoids in definitive hosts, morphogenesis of tapeworms within fish hosts, and the length of the prepatent period are still scarce and new observations are needed. Whereas extensive information exists on the development of P. longicollis (syns. P. exiguus and P. neglectus), almost no data are available on the ontogeny of other taxa, in particular those occurring in brackish waters (P. gobiorum, P. tetrastomus). The morphology of P. cernuae and P. osculatus procercoids from experimentally infected intermediate hosts is described for the first time.


Parasitology ◽  
2011 ◽  
Vol 138 (9) ◽  
pp. 1183-1192 ◽  
Author(s):  
KRISTIN K. HERRMANN ◽  
ROBERT POULIN

SUMMARYEach transmission event in complex, multi-host life cycles create obstacles selecting for adaptations by trematodes. One such adaptation is life cycle abbreviation through progenesis, in which the trematode precociously matures and reproduces within the second intermediate host. Progenesis eliminates the need for the definitive host and increases the chance of life cycle completion. However, progenetic individuals face egg-dispersal challenges associated with reproducing within metacercarial cysts in the tissues or body cavity of the second intermediate host. Most progenetic species await host death for their eggs to be released into the environment. The present study investigated temporal variation of progenesis in Stegodexamene anguillae in one of its second intermediate fish hosts and the effect of the fish's reproductive cycle on progenesis. The study involved monthly sampling over 13 months at one locality. A greater proportion of individuals became progenetic in the gonads of female fish hosts. Additionally, progenesis of worms in the gonads was correlated with seasonal daylight and temperature changes, major factors controlling fish reproduction. Host spawning events are likely to be an avenue of egg dispersal for this progenetic species, with the adoption of progenesis being conditional on whether or not the parasite can benefit from fish spawning.


2012 ◽  
Vol 2 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Anatoly Kosobryukhov ◽  
Evgeniya Markovskaya ◽  
Liudmila Sergienko

CO2 gas exchange, transpiration, stomatal conductance, water use efficiency and chlorophyll content were investigated at the leaves of three species of the family Plantaginaceae: Plantago maritima L., Plantago subpolaris Andrejev and Plantago schrenkii C.Koch under natural conditions of the habitat on high and low tide areas of the White Sea’ coasts. The high rate of photosynthesis at saturating CO2 (PNmax) at P. maritima (85.0±4.8 μmol m-2 s-1), as compared to P. subpolaris and P. schrenkii (45.2± 7.5 and 36.9±3.2 μmol m-2 s-1) was caused by high activity of ribulose-1,5-bisphoshate carboxylase/oxygenase (RuBPCO), the rate of electron transport, the rate of triose phosphate utilization, TPU), as well as high efficiency of carboxylation. The rates of photosynthesis at ambient concentration of CO2 (PN) at P. maritima were 1.4 and 1.7 times higher compared to P. subpolaris and P. schrenkii. Plants of P. schrenkii are characterized by lower values of stomatal conductance and water use efficiency compared to P. maritima and P. subpolaris. In natural habitat, the limiting factor of CO2 assimilation P. subpolaris is the rate of photosynthetic electron transport, the activity of RuBPCO in P. schrenkii.


2020 ◽  
Vol 2 ◽  
pp. 102-105
Author(s):  
A. N. Vlasov ◽  

The article outlines the continuity of the family schools of epic storytellers in the North; the featured one is the Kryukov dynasty from the Winter Coast of the White Sea. The epic repertoire of an individual storyteller from the three generations of the Kryukov family is analyzed in the context of local and general Russian traditions. Possible ties of succession and differences between them are established. The author suggests that it is too early to postulate the existence of the family schools in Zimnyaya Zolotitsa with the same certainty as in the case of the Chuprovs on the Pizhma.


Sign in / Sign up

Export Citation Format

Share Document