scholarly journals The growth and persistence of foot-and-mouth disease virus in the bovine mammary gland

1971 ◽  
Vol 69 (2) ◽  
pp. 307-321 ◽  
Author(s):  
R. Burrows ◽  
J. A. Mann ◽  
A. Greig ◽  
W. G. Chapman ◽  
D. Goodridge

SUMMARYIn animals exposed to foot-and-mouth disease virus by indirect contact, virus was recovered from the blood, milk, pharynx, vagina and rectum for variable periods of time before clinical disease was apparent. Virus instilled into the mammary gland multiplied rapidly and virus concentrations greater than 107 p.f.u./ml. were recorded within 8–32 hr., depending on the virus strain and dose inoculated. Virus multiplication was accompanied by clinical signs of mastitis but the classical signs of foot-and-mouth disease did not appear for 52–117 hr. Dissemination of virus from the mammary gland occurred within 4–24 hr. and in some animals samples taken from the pharynx, mouth, nose and vagina contained virus for periods up to 97 hr. before the appearance of vesicular lesions. Virus production in the udder declined with the appearance of virus neutralizing activity in the blood and the milk but persisted in some animals for periods of 3–7 weeks. The ability of foot-and-mouth disease virus to persist in mammary tissue was confirmed by the demonstration of virus multiplication in the udders of immune animals.

1965 ◽  
Vol 121 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Charles H. Campbell

Multiplication of foot-and-mouth disease virus (FMDV) was compared in kidney cells from 7- to 35-day-old mice representing various degrees of age resistance to this virus. Three types of cell preparations were used: primary monolayer cultures, suspensions of dispersed cells, and suspensions of minced tissue. Virus multiplication in the two types of cell suspensions was related to the age of the donors both in regard to time when multiplication first became evident and to the amount of virus produced. While adsorption rates were similar in the cells from all age groups, virus multiplication began earlier in cells from younger mice and more virus was produced by these cells than by cells from older animals. There was no significant difference in the virus growth rates in the primary monolayer cultures of cells. The results indicate that kidney cells from mice 7 to 35 days old vary in their ability to produce virus in relation to the degree of susceptibility of the cell donors. After propagation of the cells in primary monolayer cultures, however, this difference no longer exists probably because of cell selection under the cultural conditions.


2008 ◽  
Vol 137 (4) ◽  
pp. 549-554 ◽  
Author(s):  
M. LARSKA ◽  
U. WERNERY ◽  
J. KINNE ◽  
R. SCHUSTER ◽  
G. ALEXANDERSEN ◽  
...  

SUMMARYIn this study, two sheep, eight dromedary camels and two Bactrian camels were inoculated with foot-and-mouth disease virus (FMDV) type A SAU 22/92. Five naive dromedary camels and four sheep were kept in direct or indirect contact with the inoculated camels. The inoculated sheep, which served as positive controls, displayed typical moderate clinical signs of FMD and developed viraemia and high antibody titres. The presence of the virus was also detected in probang and mouth-swab samples for several days after inoculation. In contrast, the inoculated dromedary camels were not susceptible to FMDV type A infection. None of them showed clinical signs of FMD or developed viraemia or specific anti-FMDV antibodies despite the high dose of virus inoculated. All the contact sheep and contact dromedaries that were kept together with the inoculated camels remained virus-negative and did not seroconvert when tested up to 28 days post-inoculation (p.i.). In comparison with the non-susceptible dromedaries, the two inoculated Bactrian camels showed moderate to severe clinical signs of FMD; however, the clinical signs of FMD appeared rather late, between 8 and 14 days p.i., compared to the inoculated sheep. Characteristic FMD lesions in the Bactrian camels, accompanied with severe lameness, were only observed on the hind feet. The presence of the virus in the serum samples of both Bactrian camels was detected by real-time RT–PCR in one of the animals on days 3 and 7 p.i. and in the second animal from days 1 to 3 p.i. and subsequently again on day 21 p.i. The Bactrian camels developed high titres of antibodies to the inoculated FMDV which appeared at 7–10 days p.i. and lasted up to 130 days p.i. Only low and transient amounts of FMDV were detected in the mouth-swab and probang samples collected from both Bactrian camels.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Claire Colenutt ◽  
Emma Brown ◽  
Noel Nelson ◽  
David J. Paton ◽  
Phaedra Eblé ◽  
...  

ABSTRACT Indirect transmission via a contaminated environment can occur for a number of pathogens, even those typically thought of as being directly transmitted, such as influenza virus, norovirus, bovine tuberculosis, or foot-and-mouth disease virus (FMDV). Indirect transmission facilitates spread from multiple sources beyond the infectious host, complicating the epidemiology and control of these diseases. This study carried out a series of transmission experiments to determine the dose-response relationship between environmental contamination and transmission of FMDV in cattle from measurements of viral shedding and rates of environmental contamination and survival. Seven out of ten indirect exposures resulted in successful transmission. The basic reproduction number for environmental transmission of FMDV in this experimental setting was estimated at 1.65, indicating that environmental transmission alone could sustain an outbreak. Importantly, detection of virus in the environment prior to the appearance of clinical signs in infected cattle and successful transmission from these environments highlights there is a risk of environmental transmission even before foot-and-mouth disease (FMD) is clinically apparent in cattle. Estimated viral decay rates suggest that FMDV remained viable in this environment for up to 14 days, emphasizing the requirement for stringent biosecurity procedures following outbreaks of FMD and the design of control measures that reflect the biology of a pathogen. IMPORTANCE Effective control of a disease relies on comprehensive understanding of how transmission occurs, in order to design and apply effective control measures. Foot-and-mouth disease virus (FMDV) is primarily spread by direct contact between infected and naive individuals, although the high levels of virus shed by infected animals mean that virus can also be spread through contact with contaminated environments. Using a series of transmission experiments, we demonstrate that environmental transmission alone would be sufficient to sustain an outbreak. Key observations include that a risk of transmission exists before clinical signs of foot-and-mouth disease (FMD) are apparent in cattle and that survival of virus in the environment extends the transmission risk period. This study highlights the role a contaminated environment can play in the transmission of FMDV and presents approaches that can also be applied to study the transmission of other pathogens that are able to survive in the environment.


1976 ◽  
Vol 76 (3) ◽  
pp. 467-481 ◽  
Author(s):  
J. W. McVicar ◽  
P. Sutmoller

SUMMARY‘Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.’Non-immunized, vaccinated, and recovered cattle were inoculated intranasally with various doses of foot-and-mouth disease virus. Samples of oesophageal-pharyngeal (OP) fluid were taken periodically for up to 7 days after inoculation and virus titres of these samples were plotted as pharyngeal virus growth curves.In non-immunized cattle, the length of the lag period and of the growth period were inversely proportional to the dose of virus given. Maximum titres were observed when clinical signs were first detected. Three of the 10 cattle studied had virus growth rates that were lower than rates of others given the same dose of virus, and clinical signs appeared later than expected in these three cattle.Cattle vaccinated with an inactivated virus oil-adjuvant vaccine had pharyngeal virus growth curves that were similar to those obtained from non-immunized cattle for 30 h. after inoculation. Titres of virus in OP fluid samples taken 2–7 days after inoculation were substantially lower in cattle with a high pre-exposure serum mouse protection index than titres from partly-immunized or non-immunized cattle.Nine of 14 recovered cattle had detectable but reduced virus growth after intranasal inoculation with homologous virus. Five recovered cattle inoculated with heterologous virus reacted similarly to non-immunized animals.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Shengwei Hu ◽  
Jun Qiao ◽  
Qiang Fu ◽  
Chuangfu Chen ◽  
Wei Ni ◽  
...  

Foot-and-mouth disease virus (FMDV) is an economically devastating viral disease leading to a substantial loss to the swine industry worldwide. A novel alternative strategy is to develop pigs that are genetically resistant to infection. Here, we produce transgenic (TG) pigs that constitutively expressed FMDV-specific short interfering RNA (siRNA) derived from small hairpin RNA (shRNA). In vitro challenge of TG fibroblasts showed the shRNA suppressed viral growth. TG and non-TG pigs were challenged by intramuscular injection with 100 LD50 of FMDV. High fever, severe clinical signs of foot-and-mouth disease and typical histopathological changes were observed in all of the non-TG pigs but in none of the high-siRNA pigs. Our results show that TG shRNA can provide a viable tool for producing animals with enhanced resistance to FMDV.


2013 ◽  
Vol 53 (4) ◽  
pp. 335
Author(s):  
X. Q. Liu ◽  
H. Y. Liu ◽  
Q. J. Chen ◽  
M. M. Yang ◽  
H. Y. Xin ◽  
...  

Using animal mammary glands as bioreactors for producing commercially important proteins is a cutting-edge direction in the field of biotechnology development and application. Dairy goats are an important dairy livestock, with roughage-resistance, fast propagation, long lactation periods and high milk production per bodyweight; these characteristics make dairy goats ideal for use as mammary gland bioreactors. Foot-and-mouth disease virus 2A (FMDV 2A) is an efficient viral cleavage element that mediates proteolytic cleavage independent of the presence of other FMDV sequences. It is often incorporated into recombinant vectors to generate cleavage in the presence of heterologous sequences. To achieve specific co-expression of two heterologous genes in goat mammary gland epithelial (GMGE) cells, a mammary gland-specific bicistronic expression vector, pFIEβ, containing the β-casein 5′ flanking sequence and FMDV 2A, was successfully constructed and the specific expression of human interleukin 2 (hIL-2) and enhanced green fluorescent protein (EGFP) was conducted in primary GMGE cells. Another bicistronic expression vector, pFIEC, driven by the cytomegalovirus promoter, was constructed as a positive control. In cells transfected with pFIEβ and pFIEC, RT-PCR verified the existence of recombinant fusion mRNA of hIL-2 upstream of EGFP within the FMDV 2A cassette fragment and western blot analysis showed the existence of the fusion between hIL-2 and EGFP. It is concluded that FMDV 2A generated specific co-expression of multiple genes for the first time in primary GMGE cells driven by the β-casein promoter.


2008 ◽  
Vol 82 (14) ◽  
pp. 7223-7230 ◽  
Author(s):  
Carolina Cubillos ◽  
Beatriz G. de la Torre ◽  
Annamaria Jakab ◽  
Giorgia Clementi ◽  
Eva Borrás ◽  
...  

ABSTRACT The successful use of a dendrimeric peptide to protect pigs against challenge with foot-and-mouth disease virus (FMDV), which causes the most devastating animal disease worldwide, is described. Animals were immunized intramuscularly with a peptide containing one copy of a FMDV T-cell epitope and branching out into four copies of a B-cell epitope. The four immunized pigs did not develop significant clinical signs upon FMDV challenge, neither systemic nor mucosal FMDV replication, nor was its transmission to contact control pigs observed. The dendrimeric construction specifically induced high titers of FMDV-neutralizing antibodies and activated FMDV-specific T cells. Interestingly, a potent anti-FMDV immunoglobulin A response (local and systemic) was observed, despite the parenteral administration of the peptide. On the other hand, peptide-immunized animals showed no antibodies specific of FMDV infection, which qualifies the peptide as a potential marker vaccine. Overall, the dendrimeric peptide used elicited an immune response comparable to that found for control FMDV-infected pigs that correlated with a solid protection against FMDV challenge. Dendrimeric designs of this type may hold substantial promise for peptide subunit vaccine development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenping Hu ◽  
Haixue Zheng ◽  
Qiuyan Li ◽  
Yuhang Wang ◽  
Xiangtao Liu ◽  
...  

AbstractFoot-and-mouth disease virus (FMDV) is one of the most important animal pathogens in the world. FMDV naturally infects swine, cattle, and other cloven-hoofed animals. FMD is not adequately controlled by vaccination. An alternative strategy is to develop swine that are genetically resistant to infection. Here, we generated FMDV-specific shRNA transgenic cells targeting either nonstructural protein 2B or polymerase 3D of FMDV. The shRNA-positive transgenic cells displayed significantly lower viral production than that of the control cells after infection with FMDV (P < 0.05). Twenty-three transgenic cloned swine (TGCS) and nine non-transgenic cloned swine (Non-TGCS) were produced by somatic cell nuclear transfer (SCNT). In the FMDV challenge study, one TGCS was completely protected, no clinical signs, no viremia and no viral RNA in the tissues, no non-structural antibody response, another one TGCS swine recovered after showing clinical signs for two days, whereas all of the normal control swine (NS) and Non-TGCS developed typical clinical signs, viremia and viral RNA was determined in the tissues, the non-structural antibody was determined, and one Non-TGCS swine died. The viral RNA load in the blood and tissues of the TGCS was reduced in both challenge doses. These results indicated that the TGCS displayed resistance to the FMDV infection. Immune cells, including CD3+, CD4+, CD8+, CD21+, and CD172+ cells, and the production of IFN-γ were analyzed, there were no significant differences observed between the TGCS and NS or Non-TGCS, suggesting that the FMDV resistance may be mainly derived from the RNAi-based antiviral pathway. Our work provides a foundation for a breeding approach to preventing infectious disease in swine.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document