Is otosclerosis a generalized connective tissue disorder?

1987 ◽  
Vol 101 (4) ◽  
pp. 307-311 ◽  
Author(s):  
H. Oxlund ◽  
U. Pedersen ◽  
C. C. Danielsen ◽  
I. Oxlund ◽  
O. Elbrønd

AbstractIt has been suggested that otosclerosis might be caused by a generalized disorder in the connective tissue.The biophysical and biochemical properties of skin biopsies from twelve patients with otosclerosis and twelve age- and sex-matched controls were investigated. No differences were found in skin strength and extensibility, skin thickness, collagen content, the relationship between collagen type I and type III, reducible collagen cross-links and molecular stability of collagen type I of samples from patients with otosclerosis as compared with those from the controls. The present study does not support the suggestion that otosclerosis might be a generalized connective tissue disorder.

1991 ◽  
Vol 125 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Annemarie Brüel ◽  
Hans Oxlund

Abstract The biomechanical and biochemical properties of aortas from female rats treated with biosynthetic human GH (b-hGH) for 80 days were investigated. b-hGH was administered at a dose of 5 mg·kg−1·d−1. Treatment with b-hGH increased the body weight by 75% and the diameter of the aorta by 14% compared with the control group. The concentration of collagen and the relative amount of collagen type I were increased, and the concentration of elastin was decreased. Aortas from the b-hGH-treated group showed increased extensibility in the regions corresponding to physiological load values (i.e. 100-200 mmHg), and increased stiffness in regions with higher load values. The increased extensibility at low load values corresponds well with the loss of elastin, and the increased stiffness at higher load values with the increase of collagen and relative increase of collagen type I. These alterations induced by the growth hormone treatment might influence the elasticity and recoiling properties of the aorta.


2020 ◽  
Vol 9 (4) ◽  
pp. 24-30
Author(s):  
A.V. Asaturova ◽  
◽  
N.M. Faizullina ◽  
M.V. Bobkova ◽  
A.S. Arakelyan ◽  
...  

Introduction. Female patients with Mayer–Rokitansky–Küster–Hauser syndrome (MRKH) have high stigma scores; the condition severely affects the reproductive system. The study aimed at specification of morphological features and assessment of the maturity of connective tissues of the uterine rudiments in MRKH. Patients and methods. The study included 42 patients with vaginal and uterine aplasia having functioning uterine rudiments and 47 patients of the control group without genital malformations. Age of the patients was 20-24 years in 67.2% of the cases, and 31.2% of the patients were aged ≤ 19, inclusive. Immunohistochemi-cal assay was applied to determine expression levels of collagen I, collagen III, ММР2, ММР9, TIMP1, fibronectin and laminin proteins within the functioning uterine rudiments in comparison with levels of the same proteins in normally developed uterine tissues. Results. Decreased expression of collagen type I and elevated levels of MMP2 and MMP9 proteins in uterine tissues were observed for the group of patients with MRKH. Conclusions. 1) Uterine rudiments in patients with MRKH show variable degree of morphological similarity with the normally developed uterus; 2) The functioning uterine rudiments are subject to the same pathological processes as the normally developed uterus (myoma, endometriosis). 3) The functioning uterine rudiments in patients with MRKH show altered patterns of connective tissue remodeling, with decreased expression of collagen type I and increased expression of matrix metalloproteinases MMP2 and MMP9. Keywords: Müllerian aplasia, uterine rudiments, metalloproteinases, connective tissue remodeling, ММР2, ММР9


2017 ◽  
Vol 34 (03) ◽  
pp. 186-193
Author(s):  
T. Falade ◽  
M. Olude ◽  
O. Mustapha ◽  
E. Mbajiorgu ◽  
A. Ihunwo ◽  
...  

Abstract Introduction: This study was carried out to investigate the expression of connective tissue (Collagens I and III), glia and neuronal markers in the testis of the African giant rat using histology and immunohistochemistry techniques. Materials and Methods: Eight (8) apparently healthy wild male African giant rats were used for this experiment, divided into 2 groups (juvenile and adult) of 4 animals each. The testes were harvested following intracardial perfusion of the rats and histology was performed using Haematoxylin-Eosin stain and Mallory-Heideinhain rapid one- step staining for connective tissue. Immunohistochemical identification was achieved using the following antibodies: anti-collagen type I, anti-collagen type III, anti-glial fibrillary acidic protein and anti-p75 nerve growth factor for the expression of collagen type I, collagen type III, astrocyte-like cell and neuronal cells respectively. Photomicrography was achieved using Axioskop® microscope and quantitative data were analyzed using student t-test. Results: The cyto-architecture of the testis was typical in the African giant rat. The connective tissue expressed in the juvenile and adult group, signaling of glial-like cells were seen in the perivascular region across the experimental groups. Immuno-localization of neuronal cells were seen in the interstitial spaces across all the groups, but with more expressions in the juvenile. Conclusion: This work has provided a clear description of the expression of connective tissue, neuronal and glial cells in the testis of the African giant rat and their possible relationships across juvenile and adult groups.


2009 ◽  
Vol 104 (04) ◽  
pp. 327-333 ◽  
Author(s):  
P. Kann ◽  
B. Piepkorn ◽  
B. Schehler ◽  
J. Lotz ◽  
W. Prellwitz ◽  
...  

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Zejia Lin ◽  
Jican Zeng ◽  
Xinjia Wang

Abstract Osteogenesis imperfecta (OI) is an inherited connective tissue disorder with a broad clinical spectrum that can overlap with Ehlers–Danlos syndrome (EDS). To date, patients with both OI and EDS have rarely been reported. In the present study, we investigated a family with four members, one healthy individual, one displaying OI only, and two displaying the compound phenotype of OI and EDS, and identified the pathogenic mutations. Whole exome sequencing was applied to the proband and her brother. To verify that the mutations were responsible for the pathogenesis, conventional Sanger sequencing was performed for all members of the family. We identified a known COL1A1 (encoding collagen type I α 1 chain) mutation (c.2010delT, p.Gly671Alafs*95) in all three patients (the proband, her brother, and her mother) in this family, but also a novel heterozygous COL5A1 (encoding collagen type V α 1 chain) mutation (c.5335A>G, p.N1779D) in the region encoding the C-terminal propeptide domain in the proband and her mother, who both had the compound phenotype of OI and EDS. The results of the present study suggested that the proband and her mother presented with the compound OI–EDS phenotype caused by pathogenic mutations in COL5A1 and COL1A1.


2017 ◽  
Vol 3 (3) ◽  
pp. 37-40
Author(s):  
Juan Camilo Sarmiento Ramón ◽  
Juan Carlos Rojas Castillo ◽  
Edwin Antonio Wandurraga Sánchez ◽  
Gustavo Adolfo Parra Serrano ◽  
Juan Guillermo Sarmiento Ramón

La osteogénesis imperfecta (OI) corresponde a un conjunto de trastornos hereditarios del tejido conectivo que tienen como manifestación común la fragilidad ósea. Su etiología es de origen genético y la gran mayoría de casos corresponden a mutaciones autosómicas dominantes de genes que codifican para el colágeno tipo I. Su diagnóstico es primariamente clínico basado en las características típicas de la enfermedad. Reportamos el caso de una mujer con historia de fracturas recurrentes en diferentes ocasiones, y el de su hija de tres años, quien al momento del reporte ya ha presentado dos fracturas.AbstractOsteogenesis imperfecta (OI) encompasses a group of inherited connective tissue with bone fragility as its common manifestation. Its etiology is genetic in nature and the vast majority of cases are due to autosomal dominant mutations of genes that code for collagen type I proteins. Diagnosis is primarily based on the typical clinical features of the disease. We report the case of a woman with a history of recurrent fractures at different moments in time, and her three year old daughter who at the moment of this report has already had two fractures.


Sign in / Sign up

Export Citation Format

Share Document