The tympanic membrane in cross section: a finite element analysis

1988 ◽  
Vol 102 (3) ◽  
pp. 209-214 ◽  
Author(s):  
T. H. J. Lesser ◽  
K. R. Williams

AbstractThis paper applies the technique of finite element analysis to the tympanic membrane. A Two-dimensional cross-sectional model of the tympanic membrane and malleus is described. A variety of experiments have been performed on this model, and displacements under a uniform load are analysed. The shape of the displaced membrane and the movement of the umbo were found tobe sensitive to a number of factors. These include the elastic modulus of the membrane, the presence and position of the axis or rotation of the malleus, and the size of the pars flaccida. Some implications of these results are discussed.

2021 ◽  
Vol 31 (4) ◽  
pp. 345-348
Author(s):  
Yasuhide Tsuji ◽  
Keita Morimoto ◽  
Akito Iguchi ◽  
Tatsuya Kashiwa ◽  
Shinji Nishiwaki

2014 ◽  
Vol 986-987 ◽  
pp. 927-930
Author(s):  
Yi Zhu ◽  
Bo Li ◽  
Hao Wang ◽  
Kun Li

Put the finite element analysis of line tower coupling modeling to the collapse of a 110 kV line straight-line tower, study the effect of strong wind on transmission tower and wire. The results show that under the action of strong wind, the material specification selected by the part of the rods on the type of tower is lower, cross section is smaller, the principal material of tower will be instable and flexional under the compression, resulting in tower collapsed.


2021 ◽  
Author(s):  
Richárd Horváth ◽  
Vendel Barth ◽  
Viktor Gonda ◽  
Mihály Réger ◽  
Imre Felde

Abstract In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.


Sign in / Sign up

Export Citation Format

Share Document