Low cost digital endoscopic photography

2008 ◽  
Vol 123 (4) ◽  
pp. 453-456 ◽  
Author(s):  
G D Barr

AbstractIntroduction:Endoscopic digital photography usually involves expensive and often cumbersome equipment.Aim:This study aimed to construct a low cost adaptor with which to connect a budget-priced digital camera to a nasal endoscope, in order to enable inexpensive, good quality otology photography.Method:A method of making an adaptor from a simple plastic bottle top is described, and the photographic technique is outlined.Results:The adaptor fitted well with commonly used endoscopes, and excellent results were obtained.Conclusion:High quality digital endoscopic photographs can be obtained using a low cost compact digital camera fitted with a simple adaptor made from a plastic bottle top. Such a method would make digital photography via a rigid endoscope easily affordable worldwide.

2020 ◽  
Vol 12 (16) ◽  
pp. 2644 ◽  
Author(s):  
Susana Del Pozo ◽  
Pablo Rodríguez-Gonzálvez ◽  
David Hernández-López ◽  
Jorge Onrubia-Pintado ◽  
Diego Guerrero-Sevilla ◽  
...  

Close-range photogrammetry is a powerful and widely used technique for 3D reconstruction of archaeological environments, specifically when a high-level detail is required. This paper presents an innovative low-cost system that allows high quality and detailed reconstructions of indoor complex scenarios with unfavorable lighting conditions by means of close-range nadir and oblique images as an alternative to drone acquisitions for those places where the use of drones is limited or discouraged: (i) indoor scenarios in which both loss of GNSS signal and need of long exposure times occur, (ii) scenarios with risk of raising dust in suspension due to the proximity to the ground and (iii) complex scenarios with variability in the presence of nooks and vertical elements of different heights. The low-altitude aerial view reached with this system allows high-quality 3D documentation of complex scenarios helped by its ergonomic design, self-stability, lightness, and flexibility of handling. In addition, its interchangeable and remote-control support allows to board different sensors and perform both acquisitions that follow the ideal photogrammetric epipolar geometry but also acquisitions with geometry variations that favor a more complete and reliable reconstruction by avoiding occlusions. This versatile pole photogrammetry system has been successfully used to 3D reconstruct and document the “Cueva Pintada” archaeological site located in Gran Canaria (Spain), of approximately 5400 m2 with a Canon EOS 5D MARK II SLR digital camera. As final products: (i) a great quality photorealistic 3D model of 1.47 mm resolution and ±8.4 mm accuracy, (ii) detailed orthophotos of the main assets of the archaeological remains and (iii) a visor 3D with associated information on the structures, materials and plans of the site were obtained.


2002 ◽  
Vol 10 (6) ◽  
pp. 10-15
Author(s):  
Gregor Overney

Photomicrography is the combination of photography and compound microscopy. Photographers working with compound microscopes are facing many challenges (for an introduction see [1] and [2]). Digital photography offers great advantages, but also adds additional difficulties. Digital cameras have been used in photomicrography for over a decade now. Today, we have access to many excellent consumer-grade digital cameras that are most suitable for low-cost imaging systems for light microscopy. In this short paper, I summarize my experience with the Sony DSC-S70 digital camera, which comes with a nice, large Zeiss lens. (Most of the ideas presented in this paper are also valid for the DSC-S75 and DSC-S85.)


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Santiago Lopez-Restrepo ◽  
Andres Yarce ◽  
Nicolás Pinel ◽  
O.L. Quintero ◽  
Arjo Segers ◽  
...  

The use of low air quality networks has been increasing in recent years to study urban pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network against the official monitoring network. The results show that the PM2.5 low-cost measurements are very close to those observed by the official network. Additionally, the low-cost allows a higher spatial representation of the concentrations across the valley. We integrate low-cost observations with the chemical transport model Long Term Ozone Simulation-European Operational Smog (LOTOS-EUROS) using data assimilation. Two different configurations of the low-cost network were assimilated: using the whole low-cost network (255 sensors), and a high-quality selection using just the sensors with a correlation factor greater than 0.8 with respect to the official network (115 sensors). The official stations were also assimilated to compare the more dense low-cost network’s impact on the model performance. Both simulations assimilating the low-cost model outperform the model without assimilation and assimilating the official network. The capability to issue warnings for pollution events is also improved by assimilating the low-cost network with respect to the other simulations. Finally, the simulation using the high-quality configuration has lower error values than using the complete low-cost network, showing that it is essential to consider the quality and location and not just the total number of sensors. Our results suggest that with the current advance in low-cost sensors, it is possible to improve model performance with low-cost network data assimilation.


2021 ◽  
Vol 640 (4) ◽  
pp. 042014
Author(s):  
E N Turin ◽  
A N Susskiy ◽  
R S Stukalov ◽  
M V Shestopalov ◽  
E L Turina ◽  
...  
Keyword(s):  
Low Cost ◽  

2003 ◽  
Vol 11 (4) ◽  
pp. 209-215 ◽  
Author(s):  
Keng Chen ◽  
Stephen Shumack ◽  
Richard Wootton

2013 ◽  
Vol 787 ◽  
pp. 382-387
Author(s):  
Li Zhou ◽  
Yuan Kui Ding ◽  
Pai Feng Luo

A facile low-cost non-vacuum process for fabrication of high quality CuInSe2(CIS) films is described, which indicates a promising way for the application in thin film solar cells. First, citrate-capped Cu11In9alloy nanoparticles are synthesized by hot-injection method after a system research on the different reaction time and Cu-In ratio of the raw materials. From the TEM and XRD results, we can see that uniform spherical nanoparticles with dominant Cu11In9phase and less particle-to-particle agglomeration are successfully achieved in this study. Then, employing spray and RTP selenization process, high quality CIS films with dense and big grains are obtained, which show the single chalcopyrite structure and the preferred (112) orientation. An energy band gap about 1.01 eV is measured through the absorption spectroscopy measurement in our work.


Sign in / Sign up

Export Citation Format

Share Document