scholarly journals Novel Pole Photogrammetric System for Low-Cost Documentation of Archaeological Sites: The Case Study of “Cueva Pintada”

2020 ◽  
Vol 12 (16) ◽  
pp. 2644 ◽  
Author(s):  
Susana Del Pozo ◽  
Pablo Rodríguez-Gonzálvez ◽  
David Hernández-López ◽  
Jorge Onrubia-Pintado ◽  
Diego Guerrero-Sevilla ◽  
...  

Close-range photogrammetry is a powerful and widely used technique for 3D reconstruction of archaeological environments, specifically when a high-level detail is required. This paper presents an innovative low-cost system that allows high quality and detailed reconstructions of indoor complex scenarios with unfavorable lighting conditions by means of close-range nadir and oblique images as an alternative to drone acquisitions for those places where the use of drones is limited or discouraged: (i) indoor scenarios in which both loss of GNSS signal and need of long exposure times occur, (ii) scenarios with risk of raising dust in suspension due to the proximity to the ground and (iii) complex scenarios with variability in the presence of nooks and vertical elements of different heights. The low-altitude aerial view reached with this system allows high-quality 3D documentation of complex scenarios helped by its ergonomic design, self-stability, lightness, and flexibility of handling. In addition, its interchangeable and remote-control support allows to board different sensors and perform both acquisitions that follow the ideal photogrammetric epipolar geometry but also acquisitions with geometry variations that favor a more complete and reliable reconstruction by avoiding occlusions. This versatile pole photogrammetry system has been successfully used to 3D reconstruct and document the “Cueva Pintada” archaeological site located in Gran Canaria (Spain), of approximately 5400 m2 with a Canon EOS 5D MARK II SLR digital camera. As final products: (i) a great quality photorealistic 3D model of 1.47 mm resolution and ±8.4 mm accuracy, (ii) detailed orthophotos of the main assets of the archaeological remains and (iii) a visor 3D with associated information on the structures, materials and plans of the site were obtained.

Author(s):  
D King ◽  
R Luk ◽  
P Massingberd-Mundy ◽  
A Sendell ◽  
R Holmes

This paper is concerned with the design and development of a low-cost system for applying product information to a target area on the top of a carton passing through a cartoning machine at, typically, 60 cartons a minute. A prototype was designed and built which prints high-quality preprogrammed characters on to a range of carton sizes, can be adjusted in the x, y and z planes and can be fitted to a variety of existing packaging machines.


2008 ◽  
Vol 123 (4) ◽  
pp. 453-456 ◽  
Author(s):  
G D Barr

AbstractIntroduction:Endoscopic digital photography usually involves expensive and often cumbersome equipment.Aim:This study aimed to construct a low cost adaptor with which to connect a budget-priced digital camera to a nasal endoscope, in order to enable inexpensive, good quality otology photography.Method:A method of making an adaptor from a simple plastic bottle top is described, and the photographic technique is outlined.Results:The adaptor fitted well with commonly used endoscopes, and excellent results were obtained.Conclusion:High quality digital endoscopic photographs can be obtained using a low cost compact digital camera fitted with a simple adaptor made from a plastic bottle top. Such a method would make digital photography via a rigid endoscope easily affordable worldwide.


Author(s):  
I. Aicardi ◽  
F. Chiabrando ◽  
N. Grasso ◽  
A. M. Lingua ◽  
F. Noardo ◽  
...  

In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (e.g. including façades and building footprints). Expensive airborne cameras, installed on traditional aerial platforms, usually acquired the data. The purpose of this paper is to evaluate the possibility of acquire and use oblique images for the 3D reconstruction of a historical building, obtained by UAV (Unmanned Aerial Vehicle) and traditional COTS (Commercial Off-the-Shelf) digital cameras (more compact and lighter than generally used devices), for the realization of high-level-of-detail architectural survey. The critical issues of the acquisitions from a common UAV (flight planning strategies, ground control points, check points distribution and measurement, etc.) are described. Another important considered aspect was the evaluation of the possibility to use such systems as low cost methods for obtaining complete information from an aerial point of view in case of emergency problems or, as in the present paper, in the cultural heritage application field. The data processing was realized using SfM-based approach for point cloud generation: different dense image-matching algorithms implemented in some commercial and open source software were tested. The achieved results are analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested on the S. Maria Chapel, a part of the Novalesa Abbey (Italy).


2020 ◽  
Vol 6 (3) ◽  
pp. 446-458
Author(s):  
Marwa Mohammed Bori ◽  
Zahraa Ezzulddin Hussein

As known Close range photogrammetry represents one of the most techniques to create precise 3D model. Metric camera, digital camera, and Laser scanning can be exploited for the photogrammetry with variety level of cost that may be high. In this study, the cost level is taken in to consideration to achieve balance between the cost and the obtained accuracy. This study aims to detect potential of low cost tools for creating 3D model in terms of obtained accuracy and details and comparing it with corresponding studies. Smart phone camera is the most available for everyone; this gave the motivation for use in this study. In addition, Google Earth was used to integrate the 3D model produced from all sides including the roof.  Then, two different types of the mobile camera were used in addition to the DSLR camera (Digital Single Lens Reflex) for comparison and analysis purposes. Thus, this research gave flexibility in work and low cost resulting from replacement the metric camera with the smart camera and the unmanned aerial vehicle (UAV) with Google Earth data. Mechanism of the work can be summarized in four steps. Firstly, photogrammetry planning to determine suitable baselines from object and location of targets that measured using GPS and Total station devices. Secondly, collect images using close range photogrammetry technique. Thirdly, processing step to create the 3D model and integrated with Google Earth images using the Agi Photoscan software. Finally, Comparative and evaluation stage to derive the accuracy and quality of the model obtained from this study using statistical analysis method. Regarding this Study, University of Baghdad, central library was selected as the case study. The results of this paper show that the low cost 3D model resulted from integrating  phone and Google Earth images gave suitable result with mean accuracy level reached to about less than 5 meters compared with DSLR camera result, this may be used for several applications such as  culture heritage and architecture documentation.


Author(s):  
A. Dlesk ◽  
K. Vach ◽  
P. Holubec

Abstract. This paper shows the possibilities of using low-cost photogrammetry for interior mapping as a tool to gather fast and accurate data for 3D modelling and BIM. To create a 3D model of a building interior with a high level of detail requires techniques such as laser scanning and photogrammetry. In the case of photogrammetry, it is possible to use standard cameras and SfM software to create an accurate point cloud which can be used for 3D modelling and then for BIM. The images captured indoor are often captured under lower light conditions. Using different exposure during capturing of images of building interior was tested. Frequent plain walls of a building interior cause that the images are usually lack of any features and their photogrammetric processing is getting much more difficult. In some cases, results of photogrammetric processing are poor and inaccurate. In this paper, an experiment of creating a 3D model of a building interior using photogrammetric processing of images was carried out. For this experiment digital camera with two different lenses (16 mm lens and fisheye lens) was used. For photogrammetric processing were chosen different software. All the results were compared to each other and to the laser scanning data of the interior. At the end of the paper, the discussion of the advantages and disadvantages of the shown method has been made.


Author(s):  
Roman Shults ◽  
Petro Krelshtein ◽  
Iulia Kravchenko ◽  
Olga Rogoza ◽  
Oleksandr Kyselov

Culture heritage will always remain one of the priorities of any state. Taking a cultural or historical object under protection is impossible without inventory. The best technology, which allows getting high-quality inventory, is close-range photogrammetry. Unfortunately, the full capabilities of this technology is fully owned by professionals only. The situation changed significantly with the advent of mobile devices that are equipped with digital cameras and low-cost software that does not require any special knowledge in the theory and practice of photogrammetry. These developments have been called lowcost photogrammetry technologies. In the present study, we examined the use of smartphones and nano UAV and PhotoScan software for solve the problem fortifications II World War inventory near the city of Kiev. For qualitative data, the calibration of digital cameras in smartphones and ultra-light UAV was performed on calibration bench. One of the features of this project was the integration of the terrestrial photos and photos captured by nano UAVs. As a result of work performed were obtained 3D models of fortifications. Results showed high efficiency of the low-cost photogrammetry technologies. At the end of work some practical guidelines were provided, how to get high-quality data using low-cost photogrammetry technologies.


Author(s):  
L. Perfetti ◽  
F. Fassi ◽  
C. Rossi

Abstract. In the archaeological practice, Digital Terrain Models (DTMs) and Digital Surface Models (DSMs) may be used to represent spatial information about the site by conveying information such as differences in levels, morphology of the terrain and movements of volumes during the excavation. Nowadays DTMs and DSMs can be easily obtained by image-based matching using low altitude aerial dataset acquired from a digital camera by means of a lifting device. In recent years, the spread of commercial multi-rotor unmanned aerial vehicles and their decreasing cost made low-altitude aerial photography even easier than before, where balloons, kites and telescopic masts would have been used instead. However, the use of drones is often forbidden by law, especially in the archaeological areas, and therefore a more traditional approach must to be adopted instead.This paper presents two different approaches adopted on the field to acquire the DTM of an archaeological excavation: the use of a pole held by a chest harness to lift a camera up to 3.5 m height fitted with a 20 mm wide angle lens; and a second solution that exploits ground-based fisheye photogrammetry. In general, an image network acquired from ground level is challenging due to: i) the poor coverage that can be obtained on the ground, ii) the large number of images that are required to cover large areas and consequently iii) the longer elaboration time that is required to process the data. The fisheye approach, however, proved to be more effective thanks to the more robust image network resulting both from the wider field of view and from the possibility to handle large datasets by downsampling the images and still retrieving strong key points. The main difference with the first system is that the monotonous images acquired by the 20 mm lens, very plain in texture, require working at full resolution in order to distinguish valid features in the sand.The final product of the tests carried out along this line in 2019 at Saqqara (Egypt) is a comprehensive DSM of the entire archaeological site with an accuracy of ~3 cm.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1429
Author(s):  
Olaf Ciszak ◽  
Jakub Juszkiewicz ◽  
Marcin Suszyński

The purpose of the article was to build a low-cost system for identifying shapes in order to program industrial robots (on the base of the six-axis “ABB IRB 140” robot) for a welding process in 2D. The whole system consisted of several elements developed in individual stages. The first step was to identify the existing robot control systems, which analysed images from an attached low-cost digital camera. Then, a computer program, which handles communication with the digital camera capturing and processing, was written. In addition, the program’s task was to detect geometric shapes (contours) drawn by humans and to approximate them. This study also presents research on a binarization and contour recognition method for this application. Based on this, the robot is able to weld the same contours on a 2D plane.


Author(s):  
I. Aicardi ◽  
F. Chiabrando ◽  
N. Grasso ◽  
A. M. Lingua ◽  
F. Noardo ◽  
...  

In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (e.g. including façades and building footprints). Expensive airborne cameras, installed on traditional aerial platforms, usually acquired the data. The purpose of this paper is to evaluate the possibility of acquire and use oblique images for the 3D reconstruction of a historical building, obtained by UAV (Unmanned Aerial Vehicle) and traditional COTS (Commercial Off-the-Shelf) digital cameras (more compact and lighter than generally used devices), for the realization of high-level-of-detail architectural survey. The critical issues of the acquisitions from a common UAV (flight planning strategies, ground control points, check points distribution and measurement, etc.) are described. Another important considered aspect was the evaluation of the possibility to use such systems as low cost methods for obtaining complete information from an aerial point of view in case of emergency problems or, as in the present paper, in the cultural heritage application field. The data processing was realized using SfM-based approach for point cloud generation: different dense image-matching algorithms implemented in some commercial and open source software were tested. The achieved results are analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested on the S. Maria Chapel, a part of the Novalesa Abbey (Italy).


Author(s):  
A. Lingua ◽  
F. Noardo ◽  
A. Spanò ◽  
S. Sanna ◽  
F. Matrone

In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (including façades and building footprints). Here the acquisition and use of oblique images from a low cost and open source Unmanned Aerial Vehicle (UAV) for the 3D high-level-of-detail reconstruction of historical architectures is evaluated. The critical issues of such acquisitions (flight planning strategies, ground control points distribution, etc.) are described. Several problems should be considered in the flight planning: best approach to cover the whole object with the minimum time of flight; visibility of vertical structures; occlusions due to the context; acquisition of all the parts of the objects (the closest and the farthest) with similar resolution; suitable camera inclination, and so on. In this paper a solution is proposed in order to acquire oblique images with one only flight. The data processing was realized using Structure-from-Motion-based approach for point cloud generation using dense image-matching algorithms implemented in an open source software. The achieved results are analysed considering some check points and some reference LiDAR data. The system was tested for surveying a historical architectonical complex: the “Sacro Mo nte di Varallo Sesia” in north-west of Italy. This study demonstrates that the use of oblique images acquired from a low cost UAV system and processed through an open source software is an effective methodology to survey cultural heritage, characterized by limited accessibility, need for detail and rapidity of the acquisition phase, and often reduced budgets.


Sign in / Sign up

Export Citation Format

Share Document