Numerical and taxonomic scale of analysis in paleoecological data sets: Examples from neo-tropical Pleistocene reef coral communities

2001 ◽  
Vol 75 (3) ◽  
pp. 546-563 ◽  
Author(s):  
John M. Pandolfi

I investigated the degree to which the interpretation of reef coral distribution data is influenced by the numerical and taxonomic scale of analysis in Pleistocene coral communities from the Caribbean Sea. Patterns of community differentiation analyzed at both species and genus levels showed only small differences using different numerical scales (relative abundance, rank abundance and species presence and absence). Whereas some differences were observed between species and genus level patterns, they had little effect on paleoecological interpretations. The greatest differences occurred when presence and absence analyses of assemblages sampled along 40-m transects were compared with those sampled along 40-m transects augmented by a one-hour search for rare taxa. These results suggest that paleoecological interpretations of Quaternary coral communities are robust to numerical scale of analysis at the species and genus level, and to taxonomic scale between the species and genus level. However, interpretations of community structure are sensitive to sampling intensity, geographic scale, and sample size.

Author(s):  
Katie Cramer ◽  
Mary Donovan ◽  
Jeremy Jackson ◽  
Benjamin Greenstein ◽  
Chelsea Korpanty ◽  
...  

The mass die-off of Caribbean corals has transformed many of this region’s reefs to macroalgal-dominated habitats since systematic monitoring began in the 1970s. Although attributed to a combination of local and global human stressors, the lack of long-term data on Caribbean reef coral communities has prevented a clear understanding of the causes and consequences of coral declines. We integrated paleoecological, historical, and modern survey data to track the prevalence of major coral species and life history groups throughout the Caribbean from the pre-human period to present. The regional loss of Acropora corals beginning by the 1960s from local human disturbances resulted in increases in the prevalence of formerly subdominant stress-tolerant and weedy scleractinian corals and the competitive hydrozoan Millepora beginning in the 1970s and 1980s. These transformations have resulted in the homogenization of coral communities within individual countries. However, increases in stress-tolerant and weedy corals have slowed or reversed since the 1980s and 1990s in tandem with intensified coral bleaching. These patterns reveal the long history of increasingly stressful environmental conditions on Caribbean reefs that began with widespread local human disturbances and have recently culminated in the combined effects of local and global change.


2021 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
F. González-Barrios ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernandez ◽  
Nuria Estrada-Saldívar

Abstract Diseases are major drivers of the deterioration of coral reefs, linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services1-3. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican reef by summer 2018, where it spread across the ~ 450-km reef system only in a few months4. Rapid infection was generalized across all sites and mortality rates ranged from 94% to < 10% among the 21 afflicted coral species. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids (a genus apparently unaffected) will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.


2012 ◽  
Vol 81 (3) ◽  
pp. 125-146 ◽  
Author(s):  
Francesca Benzoni ◽  
Roberto Arrigoni ◽  
Fabrizio Stefani ◽  
Bastian T. Reijnen ◽  
Simone Montano ◽  
...  

The scleractinian species Psammocora explanulata and Coscinaraea wellsi were originally classified in the family Siderastreidae, but in a recent morpho-molecular study it appeared that they are more closely related to each other and to the Fungiidae than to any siderastreid taxon. A subsequent morpho-molecular study of the Fungiidae provided new insights regarding the phylogenetic relationships within that family. In the present study existing molecular data sets of both families were analyzed jointly with those of new specimens and sequences of P. explanulata and C. wellsi. The results indicate that both species actually belong to the Cycloseris clade within the family Fungiidae. A reappraisal of their morphologic characters based on museum specimens and recently collected material substantiate the molecular results. Consequently, they are renamed Cycloseris explanulata and C. wellsi. They are polystomatous and encrusting like C. mokai, another species recently added to the genus, whereas all Cycloseris species were initially thought to be monostomatous and free-living. In the light of the new findings, the taxonomy and distribution data of C. explanulata and C. wellsi have been updated and revised. Finally, the ecological implications of the evolutionary history of the three encrusting polystomatous Cycloseris species and their free-living monostomatous congeners are discussed.


2008 ◽  
Vol 32 (3) ◽  
pp. 265-276 ◽  
Author(s):  
Douglas W. Gamble ◽  
Scott Curtis

The study of Caribbean climate pre-1990 focused almost exclusively on attempts to link spatial patterns in climatic variables to physical processes. Much of this research assumed a `simple' regional climate, warm year round with a wet season dominated by tropical cyclones, but researchers soon found that a precipitation regionalization of the Caribbean was not as straightforward and simple. Consequently, a satisfactory understanding of the regional precipitation climate has eluded researchers for much of the second half of the twentieth century. Recently, with the increased availability and quality of satellite and precipitation data, researchers have begun to use gridded data sets to identify the spatial boundaries of the bimodal precipitation region and the atmospheric processes associated with the two maxima and minimum in precipitation. The findings of these most recent studies can be combined to construct a five part (North Atlantic high pressure, low level Caribbean jet, subsidence caused by Central America convection, basin wide increased wind shear, and divergence around Jamaica) conceptual Caribbean precipitation model that begins to address spatial variability in the bimodal structure of annual rainfall and the development of the midsummer minimum in precipitation. Such a regional precipitation climate model provides hypotheses to be tested and investigated in future research. Further, researchers must work towards a more effective and clear communication of the bimodal nature of Caribbean precipitation and the associated summer decrease in precipitation, integrate upper air analysis into the current working hypotheses, and further examine the interannual to interdecadal variability of the Caribbean midsummer drought for prediction purposes.


2013 ◽  
Vol 365-366 ◽  
pp. 1298-1301
Author(s):  
Zih Ping Ho ◽  
Yi En Wu ◽  
Jing Jung Chen

Production process design hybrid real processors opinions is vital important. Many production processes design did not consider processors needs, resulting in many failure products. Glutinous rice industries have their own particularity of production process. Glutinous rice product is a product which is a raw glutinous rice material hybrid from food processing. In Chinese, Japanese, Indian, Korean, etc. societies, glutinous rice products are an important rice product and staple food. Glutinous rice product processors have to face variable raw material (glutinous rice) costs, hence, if they know the trend of glutinous rice products and products diversity, then this would easily gain better profits when they produce these glutinous rice products. This research tries to build a better production processes through processors depth interview, aiming at glutinous rice processors for examples. In this study, a profit formula was constructed. Through in depth interview survey, there were 12 processors in Taiwan visited during 2012. It showed that health, convenience and tourism factors potentially obtained the most profits when processors produced these glutinous rice products. These raw distribution data sets of glutinous rice processors costs would be a foundation of production process design references.


1992 ◽  
Vol 6 ◽  
pp. 43-43
Author(s):  
Ann F. Budd ◽  
Thomas A. Stemann ◽  
Kenneth G. Johnson

Study of the stratigraphic ranges of reef coral species in scattered sequences (Dominican Republic, Bahamas, Costa Rica, Jamaica, and Florida) suggests that a major episode of faunal turnover occurred in the Caribbean region between early Pliocene and mid Pleistocene time. In a data set composed of all reef corals except the families Mussidae and Oculinidae and the genera Cladocora and Madracis, approximately 90% of the Mio-Pliocene fauna, composed of as many as 65–70 species, became extinct during this time interval. Ten of 27 genera became extinct. Despite the high numbers of extinctions, the total number of species in the Caribbean reef coral fauna dropped only slightly over the time interval, due to similar numbers of originations and extinctions in the fauna. With one possible exception, new species arose in surviving genera, and no new genera formed.Although similar numbers of species became extinct within early Pliocene, late Pliocene, and early Pleistocene time units, shallow water communities experienced higher numbers of extinctions during the late Miocene and early Pliocene. Deeper water communities experienced higher numbers of extinctions during the late Pliocene and early Pleistocene. Species surviving the turnover episode occur in deeper water communities and belong predominantly to the family Agariciidae. Nearshore grass flat communities contain the highest number of early extinctions. No difference in extinction patterns could be detected between taxa which reproduce primarily by fragmentation and those that reproduce primarily by larval recruitment. Although originations appear evenly distributed among community types, a large number occur in Florida along the northern margin of faunal distribution.The increased extinctions in shallow water communities and increased originations in the north suggest that turnover occurred primarily in response to change in abiotic factors such as temperature and siltation, and not in response to species-area effects associated with sea level change.


2004 ◽  
Vol 58 (2) ◽  
pp. 159-174 ◽  
Author(s):  
P. L. (Paul L.) Jokiel ◽  
Eric K. Brown ◽  
Alan Friedlander ◽  
S. Ku'ulei Rodgers ◽  
William R. Smith

Author(s):  
ToddC. LaJeunesse ◽  
DanielJ. Thornhill ◽  
EvelynF. Cox ◽  
FrankG. Stanton ◽  
WilliamK. Fitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document