Cylindrically symmetric waves in the magnetohydrodynamic approximation

1972 ◽  
Vol 8 (3) ◽  
pp. 331-340 ◽  
Author(s):  
M. L. Woolley

The equations of motion of an ideally conducting medium, in the magnetohydrodynamic approximation, are solved exactly under the hypotheses that (i) one component of the magnetic field is constant everywhere, (ii) the magnetic and hydrodynamic pressures are in equilibrium, and (iii) the solution is invariant under a continuous group of transformations which preserves the symmetry of the uniform magnetic field. It is seen that the invariants of the group of transformations form the basis for a parametric description of the full solution that describes the propagation of cylindrically symmetric magneto-sonic waves in the direction of the uniform field. A number of general features of the motion are deduced, and an integral expression is given for the amplitude of the component of velocity, perpendicular to the uniform magnetic field, which undergoes potential well oscillations.

The stability of viscous flow between two coaxial cylinders maintained by a constant transverse pressure gradient is considered when the fluid is an electrical conductor and a uniform magnetic field is impressed in the axial direction. The problem is solved and the dependence of the critical number for the onset of instability on the strength of the magnetic field and the coefficient of electrical conductivity of the fluid is determined.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 467
Author(s):  
Fayçal Hammad ◽  
Alexandre Landry ◽  
Parvaneh Sadeghi

The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1306
Author(s):  
Kirill Bronnikov ◽  
Vladimir Krechet ◽  
Vadim Oshurko

We find a family of exact solutions to the Einstein–Maxwell equations for rotating cylindrically symmetric distributions of a perfect fluid with the equation of state p=wρ (|w|<1), carrying a circular electric current in the angular direction. This current creates a magnetic field along the z axis. Some of the solutions describe geometries resembling that of Melvin’s static magnetic universe and contain a regular symmetry axis, while some others (in the case w>0) describe traversable wormhole geometries which do not contain a symmetry axis. Unlike Melvin’s solution, those with rotation and a magnetic field cannot be vacuum and require a current. The wormhole solutions admit matching with flat-space regions on both sides of the throat, thus forming a cylindrical wormhole configuration potentially visible for distant observers residing in flat or weakly curved parts of space. The thin shells, located at junctions between the inner (wormhole) and outer (flat) regions, consist of matter satisfying the Weak Energy Condition under a proper choice of the free parameters of the model, which thus forms new examples of phantom-free wormhole models in general relativity. In the limit w→1, the magnetic field tends to zero, and the wormhole model tends to the one obtained previously, where the source of gravity is stiff matter with the equation of state p=ρ.


2018 ◽  
Vol 185 ◽  
pp. 09006
Author(s):  
Alexander Tyatyushkin

Small steady-state deformational oscillations of a drop of magnetic liquid in a nonstationary uniform magnetic field are theoretically investigated. The drop is suspended in another magnetic liquid immiscible with the former. The Reynolds number is so small that the inertia can be neglected. The variation of the magnetic field is so slow that the quasi-stationary approximation for the magnetic field and the quasi-steady approximation for the flow may be used.


Author(s):  
Rajesh Nimmagadda ◽  
Durga Prakash Matta ◽  
Rony Reuven ◽  
Lazarus Godson Asirvatham ◽  
Somchai Wongwises ◽  
...  

Abstract A 2D numerical investigation has been carried out to obtain the heat transfer performance of hybrid (Al2O3 + Ag) nanofluid in a lid driven cavity over solid block under the influence of uniform as well as non-uniform magnetic field. The geometrical domain consists of a cavity containing nanofluid that is driven by means of lid moving in one direction. This circulating nanofluid will extract enormous amount of heat from the solid block underneath the cavity resulting in conjugate heat transfer. A homogenous solver based on the finite volume method with conjugate heat transfer was developed and adopted in the existing study. The heat efficient hybrid nanofluid (HyNF) pair (2.4 vol.% Ag + 0.6 vol.% Al2O3) obtained by Nimmagadda and Venkatasubbaiah [1] is used in the present investigation. Moreover, efficient non-uniform sinusoidal magnetic field identified by Nimmagadda et al. [2] is also implemented and compared with uniform magnetic field. Furthermore, the magnetic field is applied over the geometrical domain along the two axial directions separately and the effective heat transfer performance is obtained. The significant impact of extensive parameters like Reynolds number, nanoparticle type, nanoparticle concentration, magnetic field type, magnetic field location and the strength of the magnetic field on heat transfer performance are systematically analyzed and presented.


2012 ◽  
Vol 8 (S290) ◽  
pp. 185-186
Author(s):  
Pavel Bakala ◽  
Martin Urbanec ◽  
Eva Šrámková ◽  
Zdeněk Stuchlík ◽  
Gabriel Török

AbstractWe study non-geodesic corrections to the quasicircular motion of charged test particles in the field of magnetized slowly rotating neutron stars. The gravitational field is approximated by the Lense-Thirring geometry, the magnetic field is of the standard dipole character. Using a fully-relativistic approach we determine influence of the electromagnetic interaction (both attractive and repulsive) on the quasicircular motion. We focus on the behaviour of the orbital and epicyclic frequencies of the motion. Components of the four-velocity of the orbiting charged test particles are obtained by numerical solution of equations of motion, the epicyclic frequencies are obtained by using the standard perturbative method. The role of the combined effect of the neutron star magnetic field and its rotation in the character of the orbital and epicyclic frequencies is discussed.


2013 ◽  
Vol 770 ◽  
pp. 374-377
Author(s):  
Apichart Sankote ◽  
Kheamrutai Thamaphat ◽  
Supanee Limsuwan

In this work, a method to measuring the magnitude of a uniform magnetic field in space using current balance was described. A simple experimental set was designed and constructed using low-cost materials. This constructed current balance consists of copper sheet, weight pan, and acrylic sheet. A copper sheet was cut into a U-shape and attached at the end of acrylic balance arm. A weight pan was hanged in the opposite side of the balance arm with high sensitivity to a small torque. The horizontal segment of the U-shaped copper sheet, which the length l was 3 cm, was located inside the influence of an uniform magnetic field produced by two parallel bar magnets with opposite poles facing each other. The magnetic field direction was perpendicular to the horizontal segment. When a current was supplied to the copper sheet, the magnetic force acting on a horizontal segment of length l carrying a current I in a magnetic field B was given by. In the experiment, the current was varied from 0 1 A. For each value of applied current, the magnetic force on a thin straight sheet of length l was measured by adding masses to the pan until the balance arm moved to the equilibrium between opposing gravitational and magnetic forces. The results showed that the magnetic force increased linearly with increasing applied current. By plotting a linear graph of magnetic force versus applied current, the magnetic field B can be calculated from . The calculated and actual values of B were 100.32 and 100.13 mT, respectively. This constructed current balance is an excellent tool for high school and undergraduate fundamental physics courses. Students will be excited when they see the balance arm rising or going down due to magnitude and direction of current flowing in a conductor wire.


1975 ◽  
Vol 13 (1) ◽  
pp. 189-191 ◽  
Author(s):  
E. Infeld ◽  
G. Rowlands

Demehenko & Hussein (1973) discussed some properties of nonlinear magneto-sonic waves in a collisionless plasma. The relevant equation describing the space dependence x of the magnetic field may be written in the form d2y/dx2+f(y) = 0, (1) where f(y) is a nonlinear function of y only.


2017 ◽  
Vol 45 ◽  
pp. 1760006
Author(s):  
Adam S. Gontijo ◽  
Oswaldo D. Miranda

The gravitational wave, through the strongly magnetized plasma surrounding the neutron stars, in the [Formula: see text]-direction, deforms plasma particle rings in ellipses, alternating axes periodically along the direction of the magnetic field ([Formula: see text]-axis) and of the [Formula: see text]-axis. The uniform field leads to a modulation of the magnetic field, which results in magnetic pressure gradients (magneto-acoustic mode) or in the shear of the magnetic field lines (Alfvén mode). The gravitational wave drives MHD modes and transfers energy to the plasma, can become an important alternative process for the acceleration of baryons to high Lorentz factors observed in short GRBs. The total amount of energy that is transferred from the gravitational wave to the plasma is estimated ([Formula: see text]J - [Formula: see text] J), with [Formula: see text]. We compare our results with previously obtained results by other works.


1963 ◽  
Vol 18 (8-9) ◽  
pp. 889-895
Author(s):  
F. Schwirzke

The radial density distribution for a plasma in a uniform magnetic field was studied in dependence of pressure and distance of the conducting end plates. It was possible to confirm experimentally the dependence of the radial distribution of the finite length in direction of the field lines. The influence of the magnetic field, of the pressure, and of the length of the plasma column on the radial density profile is, in different gases, qualitatively in accordance with the “short-circuiting” theory of A. SIMON.


Sign in / Sign up

Export Citation Format

Share Document