magnetohydrodynamic wave
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 217 (6) ◽  
Author(s):  
V. M. Nakariakov ◽  
S. A. Anfinogentov ◽  
P. Antolin ◽  
R. Jain ◽  
D. Y. Kolotkov ◽  
...  

AbstractKink oscillations of coronal loops, i.e., standing kink waves, is one of the most studied dynamic phenomena in the solar corona. The oscillations are excited by impulsive energy releases, such as low coronal eruptions. Typical periods of the oscillations are from a few to several minutes, and are found to increase linearly with the increase in the major radius of the oscillating loops. It clearly demonstrates that kink oscillations are natural modes of the loops, and can be described as standing fast magnetoacoustic waves with the wavelength determined by the length of the loop. Kink oscillations are observed in two different regimes. In the rapidly decaying regime, the apparent displacement amplitude reaches several minor radii of the loop. The damping time which is about several oscillation periods decreases with the increase in the oscillation amplitude, suggesting a nonlinear nature of the damping. In the decayless regime, the amplitudes are smaller than a minor radius, and the driver is still debated. The review summarises major findings obtained during the last decade, and covers both observational and theoretical results. Observational results include creation and analysis of comprehensive catalogues of the oscillation events, and detection of kink oscillations with imaging and spectral instruments in the EUV and microwave bands. Theoretical results include various approaches to modelling in terms of the magnetohydrodynamic wave theory. Properties of kink oscillations are found to depend on parameters of the oscillating loop, such as the magnetic twist, stratification, steady flows, temperature variations and so on, which make kink oscillations a natural probe of these parameters by the method of magnetohydrodynamic seismology.


2021 ◽  
Vol 912 (1) ◽  
pp. 50
Author(s):  
Anwar A. Aldhafeeri ◽  
Gary Verth ◽  
Wernher Brevis ◽  
David B. Jess ◽  
Max McMurdo ◽  
...  

Author(s):  
Caitlin A. Gilchrist-Millar ◽  
David B. Jess ◽  
Samuel D. T. Grant ◽  
Peter H. Keys ◽  
Christian Beck ◽  
...  

The suitability of solar pores as magnetic wave guides has been a key topic of discussion in recent years. Here, we present observational evidence of propagating magnetohydrodynamic wave activity in a group of five photospheric solar pores. Employing data obtained by the Facility Infrared Spectropolarimeter at the Dunn Solar Telescope, oscillations with periods of the order of 5 min were detected at varying atmospheric heights by examining Si ɪ 10827 Å line bisector velocities. Spectropolarimetric inversions, coupled with the spatially resolved root mean square bisector velocities, allowed the wave energy fluxes to be estimated as a function of atmospheric height for each pore. We find propagating magnetoacoustic sausage mode waves with energy fluxes on the order of 30 kW m −2 at an atmospheric height of 100 km, dropping to approximately 2 kW m −2 at an atmospheric height of around 500 km. The cross-sectional structuring of the energy fluxes reveals the presence of both body- and surface-mode sausage waves. Examination of the energy flux decay with atmospheric height provides an estimate of the damping length, found to have an average value across all five pores of L d  ≈ 268 km, similar to the photospheric density scale height. We find the damping lengths are longer for body mode waves, suggesting that surface mode sausage oscillations are able to more readily dissipate their embedded wave energies. This work verifies the suitability of solar pores to act as efficient conduits when guiding magnetoacoustic wave energy upwards into the outer solar atmosphere. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.


2020 ◽  
Vol 638 ◽  
pp. A89 ◽  
Author(s):  
C. R. Goddard ◽  
G. Nisticò

Context. Transverse oscillations of coronal structures are currently intensively studied to explore the associated magnetohydrodynamic wave physics and perform seismology of the local medium. Aims. We make a first attempt to measure the thermodynamic evolution of a sample of coronal loops that undergo decaying kink oscillations in response to an eruption in the corresponding active region. Methods. Using data from the six coronal wavelengths of SDO/AIA, we performed a differential emission measure (DEM) analysis of 15 coronal loops before, during, and after the eruption and oscillation. Results. We find that the emission measure, temperature, and width of the DEM distribution undergo significant variations on timescales relevant for the study of transverse oscillations. There are no clear collective trends of increases or decreases for the parameters we analysed. The strongest variations of the parameters occur during the initial perturbation of the loops, and the influence of background structures may also account for much of this variation. Conclusions. The DEM analysis of oscillating coronal loops in erupting active regions shows evidence of evolution on timescales important for the study of oscillations. Further work is needed to separate the various observational and physical mechanisms that may be responsible for the variations in temperature, DEM distribution width, and total emission measure.


2020 ◽  
Vol 27 (4) ◽  
pp. 042108 ◽  
Author(s):  
Archana Patidar ◽  
Prerana Sharma

2017 ◽  
Vol 45 ◽  
pp. 1760006
Author(s):  
Adam S. Gontijo ◽  
Oswaldo D. Miranda

The gravitational wave, through the strongly magnetized plasma surrounding the neutron stars, in the [Formula: see text]-direction, deforms plasma particle rings in ellipses, alternating axes periodically along the direction of the magnetic field ([Formula: see text]-axis) and of the [Formula: see text]-axis. The uniform field leads to a modulation of the magnetic field, which results in magnetic pressure gradients (magneto-acoustic mode) or in the shear of the magnetic field lines (Alfvén mode). The gravitational wave drives MHD modes and transfers energy to the plasma, can become an important alternative process for the acceleration of baryons to high Lorentz factors observed in short GRBs. The total amount of energy that is transferred from the gravitational wave to the plasma is estimated ([Formula: see text]J - [Formula: see text] J), with [Formula: see text]. We compare our results with previously obtained results by other works.


Sign in / Sign up

Export Citation Format

Share Document