Second harmonic interference patterns of ion-acoustic waves

1982 ◽  
Vol 27 (3) ◽  
pp. 543-552
Author(s):  
L. Schott

The interaction of two weakly nonlinear sinusoidal ion-acoustic waves produces mainly a fundamental and a second harmonic diffraction pattern. The former is similar to the double slit pattern well known from physical optics, while it is found that the latter resembles a linear pattern generated by the superposition of three waves. The third wave is formed by mutual nonlinear interaction of the two fundamental waves. The intensity of the second harmonic pattern is modulated by the recurrence effect and it depends also on the angle between the local wave vectors.

2021 ◽  
pp. 2150468
Author(s):  
Youssoufa Saliou ◽  
Souleymanou Abbagari ◽  
Alphonse Houwe ◽  
M. S. Osman ◽  
Doka Serge Yamigno ◽  
...  

By employing the Modified Sardar Sub-Equation Method (MSEM), several solitons such as W-shape bright, dark solitons, trigonometric function solutions and singular function solutions have been obtained in two famous nonlinear evolution equations which are used to describe waves in quantum electron–positron–ion magnetoplasmas and weakly nonlinear ion-acoustic waves in a plasma. These models are the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov (NLEQZK) equation and the (3+1)-dimensional nonlinear modified Zakharov–Kuznetsov (NLmZK) equation, respectively. Comparing the obtained results with Refs. 32–34 and Refs. 43–46, additional soliton-like solutions have been retrieved and will be useful in future to explain the interaction between lower nonlinear ion-acoustic waves and the parameters of the MSEM and the obtained figures will have more physical explanation.


1981 ◽  
Vol 59 (6) ◽  
pp. 719-721 ◽  
Author(s):  
Bhimsen K. Shivamoggi

The propagation of weakly nonlinear ion–acoustic waves in an inhomogeneous plasma is studied taking into account the effect of finite ion temperature. It is found that, whereas both the amplitude and the velocity of propagation decrease as the ion–acoustic solitary wave propagates into regions of higher density, the effect of a finite ion temperature is to reduce the amplitude but enhance the velocity of propagation of the solitary wave.


2008 ◽  
Vol 74 (2) ◽  
pp. 245-259 ◽  
Author(s):  
MOULOUD TRIBECHE ◽  
ABDERREZAK BERBRI

AbstractThe weakly nonlinear dynamics of dust ion-acoustic waves (DIAWs) are investigated in a dusty plasma consisting of hot ion fluid, variable charge stationary dust grains and non-thermally distributed electrons. The Korteweg–de Vries equation, as well as the Korteweg–de Vries–Burgers equation, are derived on the basis of the well-known reductive perturbation theory. It is shown that, due to electron non-thermality and finite ion temperature, the present dusty plasma model can support compressive as well as rarefactive DIA solitary waves. Furthermore, there may exist collisionless DIA shock-like waves which have either monotonic or oscillatory behavior, the properties of which depend sensitively on the number of fast non-thermal electrons. The results complement and provide new insights into previously published results on this problem (Mamun, A. A. and Shukla, P. K. 2002 IEEE Trans. Plasma Sci. 30, 720).


1992 ◽  
Vol 48 (3) ◽  
pp. 477-486
Author(s):  
E. J. Parkes

The influence of ion streaming and weak relativistic effects on the modulational instability of ion-acoustic waves in a collisionless unmagnetized plasma is investigated. An averaging method is used to derive a weakly nonlinear dispersion relation, from which the instability criterion is deduced. Conflicting results in the literature are resolved.


1982 ◽  
Vol 60 (4) ◽  
pp. 392-396 ◽  
Author(s):  
M. K. Kalita ◽  
S. Bujarbarua

Considering the electron velocity distribution far from Maxwellian, we have investigated the nonlinear propagation of ion acoustic waves in a plasma consisting of warm ions. The solitary wave solution has been obtained for this case retaining terms up to the third order in the usual reductive perturbation method.


2021 ◽  
Vol 7 (2) ◽  
pp. 2044-2060
Author(s):  
Maysaa Al-Qurashi ◽  
◽  
Saima Rashid ◽  
Fahd Jarad ◽  
Madeeha Tahir ◽  
...  

<abstract><p>In this research, the Shehu transform is coupled with the Adomian decomposition method for obtaining the exact-approximate solution of the plasma fluid physical model, known as the Zakharov-Kuznetsov equation (briefly, ZKE) having a fractional order in the Caputo sense. The Laplace and Sumudu transforms have been refined into the Shehu transform. The action of weakly nonlinear ion acoustic waves in a plasma carrying cold ions and hot isothermal electrons is investigated in this study. Important fractional derivative notions are discussed in the context of Caputo. The Shehu decomposition method (SDM), a robust research methodology, is effectively implemented to generate the solution for the ZKEs. A series of Adomian components converge to the exact solution of the assigned task, demonstrating the solution of the suggested technique. Furthermore, the outcomes of this technique have generated important associations with the precise solutions to the problems being researched. Illustrative examples highlight the validity of the current process. The usefulness of the technique is reinforced via graphical and tabular illustrations as well as statistics theory.</p></abstract>


2020 ◽  
Vol 34 (25) ◽  
pp. 2050227
Author(s):  
Karmina K. Ali ◽  
Aly R. Seadawy ◽  
Asif Yokus ◽  
Resat Yilmazer ◽  
Hasan Bulut

In the current study, we instigate the four-dimensional nonlinear modified Zakharov–Kuznetsov (NLmZK) equation. The NLmZK equation guides the attitude of weakly nonlinear ion-acoustic waves in a plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Two different methods are used, namely the sine-Gordon expansion method (SGEM) and the [Formula: see text]-expansion method to the proposed model. We have successfully constructed some topological, non-topological, and wave solutions. In addition, the 2D, 3D, and contour graphs of the solutions are also plotted under the choice of appropriate values of the parameters.


Sign in / Sign up

Export Citation Format

Share Document