scholarly journals Effect of ion temperature on ion-acoustic solitons in a two-ion warm plasma with adiabatic positive and negative ions and isothermal electrons

1987 ◽  
Vol 37 (2) ◽  
pp. 322-322 ◽  
Author(s):  
S. G. Tagare

In the above mentioned paper, table 1 is incorrect and the correct version is given below. Thus the result which was there obtained, namely that the coefficient of the nonlinear term of the modified KdV equation becomes negative, is not correct and, in fact, the coefficient is always positive.

2013 ◽  
Vol 79 (5) ◽  
pp. 893-908 ◽  
Author(s):  
M. K. MISHRA ◽  
S. K. JAIN

AbstractIon-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg–de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (αc), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of αc decreases with increase in γ.


2000 ◽  
Vol 63 (4) ◽  
pp. 343-353 ◽  
Author(s):  
S. K. EL-LABANY ◽  
S. A. EL-WARRAKI ◽  
W. M. MOSLEM

Cylindrical ion-acoustic solitons are investigated in a warm plasma with negative ions and multiple-temperature electrons through the derivation of a cylindrical Korteweg–de Vries equation using a reductive perturbation theory. The results are compared with those for the corresponding planar solitons.


1985 ◽  
Vol 33 (2) ◽  
pp. 237-248 ◽  
Author(s):  
Y. Nakamura ◽  
J. L. Ferreira ◽  
G. O. Ludwig

Ion-acoustic solitons in a three-component plasma which consists of electrons and positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg-de Vries equation which takes the negative ions and the ion temperature into consideration. Head-on and overtaking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions.


2005 ◽  
Vol 71 (1) ◽  
pp. 23-34 ◽  
Author(s):  
TARSEM SINGH GILL ◽  
HARVINDER KAUR ◽  
NARESHPAL SINGH SAINI

The effect on the propagation of ion-acoustic solitons and double layers has been studied in collisionless weakly relativistic plasma consisting of two-electron temperature with isothermal electrons and finite ion temperature. The Korteweg de-Vries (KdV) equation is derived for ion-acoustic solitons propagating in a collisionless plasma. This equation is solved in a stationary frame to obtain the expression for soliton phase velocity, soliton width and peak soliton amplitude. It is observed that these quantities are significantly influenced by the relativistic effect, ion temperature, low-temperature electron density and ratio of cold to hot electron temperatures. Many features expected from hot ion theory and two species electron plasmas automatically emerge. The analysis is further extended to higher order nonlinearity and modified Korteweg de-Vries (mKdV) equation is derived. Even though compressive and rarefactive ion-acoustic solitons are obtained, only rarefactive ion-acoustic double layers are obtained in the present investigation.


2013 ◽  
Vol 02 (01) ◽  
pp. 15-25 ◽  
Author(s):  
APPN Editorial Office

It is well known that multicomponent plasma with negative ions supports a number of wave modes such as ion-acoustic solitons described by the Kortewege-de Vries (KdV) equation, modified KdV solitons at critical density of negative ions and ion-acoustic envelop solitons described by nonlinear Schrödinger equation (NLSE). The NLSE which is equivalent to the mKdV equation is applicable in describing evolution of ion-acoustic wave in plasma at critical density of negative ions which becomes modulationaly unstable when the nonlinear co-efficient is negative.


1986 ◽  
Vol 36 (2) ◽  
pp. 301-312 ◽  
Author(s):  
S. G. Tagare

Ion-acoustic solitons in a collisionless plasma with adiabatic positive and negative ions with equal ion temperature and isothermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced for the fast ion-acoustic wave to the Korteweg–de Vries and modified Korteweg–de Vries equation and for the slow ion-acoustic wave to the Korteweg–de Vries equation. Stationary solutions of these equations are obtained and the effect of ion temperature on fast and slow ion-acoustic solitons is investigated.


1994 ◽  
Vol 52 (3) ◽  
pp. 409-429 ◽  
Author(s):  
M. K. Mishra ◽  
R. S. Chhabra ◽  
S. R. Sharma

Oblique propagation of ion-acoustic solitons in a magnetized low-β plasma consisting of warm positive and negative ion species along with hot electrons is studied. Using the reductive perturbation method, a KdV equation is derived for the system, which admits an obliquely propagating soliton solution. It is found that if the ions have finite temperatures then there exist two types of modes, namely slow and fast ion-acoustic modes. The parameter determining the nature of soliton (i.e. whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode the parameter is the relative temperature of the two ion species, whereas for the fast mode it is the relative concentraion of the two ion species. For the fast mode it is found that there is a critical value of the negative-ion concentration below which only compressive solitons exist and above which rarefactive solitons exist. To discuss the soliton solution at the critical concentration, a modified KdV equation is derived. It is found that at the critical concentration of negative ions compressive and rarefactive solitons co-exist. The effects of temperature of different ion species, angle of obliqueness and magnetization on the characteristics of the solitons are discussed in detail.


1989 ◽  
Vol 41 (1) ◽  
pp. 139-155 ◽  
Author(s):  
K. P. Das ◽  
Frank Verheest

A study is made of ion-acoustic solitons in a low-β magnetized plasma consisting of any number of adiabatic positive and negative ion species in addition to the presence of isothermal electrons. A KdV equation in three dimensions or KdV-ZK equation is derived. This equation admits comprehensive or rarefactive solitons propagating in any oblique direction with respect to the direction of the external magnetic field, depending on the density of the negative ion species. When the nonlinear coefficient of this equation vanishes, the nonlinear ion-acoustic wave is described by a modified KdV equation in three dimensions. This equation is also derived and its solitary-wave solutions are discussed. Both compressive and rarefactive solitons are possible. Finally, the three-dimensional stability of these solitons is investigated by the small-k perturbation expansion method of Rowlands and Infeld. Stability criteria and growth rates of instabilities are derived.


Sign in / Sign up

Export Citation Format

Share Document