On reconnexion experiments and their interpertation

1977 ◽  
Vol 18 (2) ◽  
pp. 257-272 ◽  
Author(s):  
P. J. Baum ◽  
A. Bratenahl

A number of reconnexion concepts and experiments are briefly reviewed in order to re-examine the present interpretation of these experiments. In particular, we offer explanations as to why some experiments appear to develop Petschek modes, tearing modes, or netural current sheets. The explanations require an understanding of the proper role of magnetic Reynolds numbers, the limits of the frozen-in concept, and the importance of natural importance of natural boundary conditions. We find that netural current sheets usually from in experiments with highly symmetrical (and therefore unnatural) boundary conditions. The classical tearing mode develops from perturbations of a neutral current sheet. In less constrained geometries multiple neutral points may appear but the classical tearing mode theory needs modification to explain these cases rigorously. A Petschek mode develops in even less constrained systems although the theoretical description is highly idealized. We offer explanations as to why some experimenters appear to find neutral current sheets in quadrupole fields and examine the usefulness of concepts derived from neutral current sheet theory.

2015 ◽  
Vol 81 (6) ◽  
Author(s):  
Neeraj Jain ◽  
Jörg Büchner

We examine, in the limit of electron plasma ${\it\beta}_{e}\ll 1$, the effect of an external guide field and current sheet thickness on the growth rates and nature of three-dimensional (3-D) unstable modes of an electron current sheet driven by electron shear flow. The growth rate of the fastest growing mode drops rapidly with current sheet thickness but increases slowly with the strength of the guide field. The fastest growing mode is tearing type only for thin current sheets (half-thickness ${\approx}d_{e}$, where $d_{e}=c/{\it\omega}_{pe}$ is the electron inertial length) and zero guide field. For finite guide field or thicker current sheets, the fastest growing mode is a non-tearing type. However, growth rates of the fastest 2-D tearing and 3-D non-tearing modes are comparable for thin current sheets ($d_{e}<\text{half thickness}<2\,d_{e}$) and small guide field (of the order of the asymptotic value of the component of magnetic field supporting the electron current sheet). It is shown that the general mode resonance conditions for tearing modes depend on the effective dissipation mechanism. The usual tearing mode resonance condition ($\boldsymbol{k}\boldsymbol{\cdot }\boldsymbol{B}_{0}=0$, $\boldsymbol{k}$ is the wavevector and $\boldsymbol{B}_{0}$ is the equilibrium magnetic field) can be recovered from the general resonance conditions in the limit of weak dissipation. The conditions (relating current sheet thickness, strength of the guide field and wavenumbers) for the non-existence of tearing mode are obtained from the general mode resonance conditions. We discuss the role of electron shear flow instabilities in magnetic reconnection.


1983 ◽  
Vol 30 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Jun-Ichi Sakai

Forced reconnexion due to tearing modes driven by fast magnetosonic waves in a current sheet with stagnation-point flows is discussed. The current sheet with stagnation-point flows which is weakly unstable against tearing modes can be strongly destabilized by vortex motions due to the ponderomotive force of the fast magnetosonic wave. This forced tearing instability can be driven when the incident fast magnetosonic wave intensity, I, exceeds a critical value given by where is the Alfvén velocity, vg the group velocity of the fast wave, vo the background inflow velocity, l the thickness of the current sheet and k the wavenumber of the forced tearing mode. The growth rate is estimated. Applications to solar flares and magnetopause reconnexion processes are briefly discussed.


1991 ◽  
Vol 46 (3) ◽  
pp. 407-421 ◽  
Author(s):  
T. D. Phan ◽  
B. U.Ö. Sonnerup

An analysis is presented of linear stability against tearing modes of a current sheet formed between two oppositely magnetized plasmas forced towards each other in two-dimensional steady stagnation-point flow. The velocity vector in this flow is confined to planes perpendicular to the reversing component of the magnetic field. The unperturbed state is an exact resistive and viscous equilibrium in which the resistive diffusion outwards from the current sheet is exactly balanced by the inward motion associated with the stagnation-point flow. Thus the behaviour of the tearing mode can be examined even when the resistive diffusion time is comparable to or smaller than the growth time of the instability. The linear ordinary differential equation describing the mode structure is integrated numerically. For large Lundquist number S and viscous Reynolds number Re the Furth-Killeen-Rosenbluth scaling of the growth rate is recovered with excellent accuracy. The influence of the stagnation-point flow on the tearing mode is as follows: (i) long-wavelength perturbations are stabilized so that the unstable regime falls between a short-wavelength and a long-wavelength marginal state; (ii) for sufficiently low Lundquist number (S < 12.25) the current sheet is completely stable to tearing-mode perturbations; (iii) the presence of high viscosity reduces the growth rate of the tearing instability. This effect is more important at small wavelength. Finally, application of the results from this study to the problem of solar-wind plasma flow past the earth's magnetosphere is briefly discussed.


Author(s):  
Kurt Kreith ◽  
Charles A. Swanson

SynopsisWirtinger-type inequalities of order n are inequalities between quadratic forms involving derivatives of order k ≦ n of admissible functions in an interval (a, b). Several methods for establishing these inequalities are investigated, leading to improvements of classical results as well as systematic generation of new ones. A Wirtinger inequality for Hamiltonian systems is obtained in which standard regularity hypotheses are weakened and singular intervals are permitted, and this is employed to generalize standard inequalities for linear differential operators of even order. In particular second order inequalities of Beesack's type are developed, in which the admissible functions satisfy only the null boundary conditions at the endpoints of [a, b] and b does not exceed the first systems conjugate point (a) of a. Another approach is presented involving the standard minimization theory of quadratic forms and the theory of “natural boundary conditions”. Finally, inequalities of order n + k are described in terms of (n, n)-disconjugacy of associated 2nth order differential operators.


2020 ◽  
Vol 8 (4) ◽  
pp. 994-1010
Author(s):  
Weizhi Xu

This paper investigates one kind of interpolation for scattered data by bi-cubic polynomial natural spline, in which the integral of square of partial derivative of two orders to x and to y for the interpolating function is minimal (with natural boundary conditions). Firstly, bi-cubic polynomial natural spline interpolations with four kinds of boundary conditions are studied. By the spline function methods of Hilbert space, their solutions are constructed as the sum of bi-linear polynomials and piecewise bi-cubic polynomials. Some properties of the solutions are also studied. In fact, bi-cubic natural spline interpolation on a rectangular domain is a generalization of the cubic natural spline interpolation on an interval. Secondly, based on bi-cubic polynomial natural spline interpolations of four kinds of boundary conditions, and using partition of unity technique, a Partition of Unity Interpolation Element Method (PUIEM) for fitting scattered data is proposed. Numerical experiments show that the PUIEM is adaptive and outperforms state-of-the-art competitions, such as the thin plate spline interpolation and the bi-cubic polynomial natural spline interpolations for scattered data.


Author(s):  
Jianfeng Ma ◽  
Joshua David Summers ◽  
Paul F. Joseph

The meshless integral method based on regularized boundary equation [1][2] is extended to analyze elastoplastic geotechnical materials. In this formulation, the problem domain is clouded with a node set using automatic node generation. The sub-domain and the support domain related to each node are also generated automatically using algorithms developed for this purpose. The governing integral equation is obtained from the weak form of elastoplasticity over a local sub-domain and the moving least-squares approximation is employed for meshless function approximation. The geotechnical materials are described by pressure-sensitive multi-surface Drucker-Prager/Cap plasticity constitutive law with hardening. A generalized collocation method is used to impose the essential boundary conditions and natural boundary conditions are incorporated in the system governing equations. A comparison of the meshless results with the FEM results shows that the meshless integral method is accurate and robust enough to solve geotechnical materials.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
R. Sadeghi ◽  
A. Salar Elahi ◽  
M. Ghoranneviss ◽  
M. K. Salem

A structural change of perturbed magnetic configurations (such as magnetic islands) during disruption phase in IR-T1 tokamak was studied. The singular value decomposition (SVD) mode analysis and the (m,n) modes identification were presented. We also presented the SVD technique to analyze the tokamak magnetic fluctuations, time evolution of magnetohydrodynamics (MHD) modes, spatial structure of each time vector, and the energy content of each modes. We also considered different scenarios for plasma from steady-state to predisruption, complete disruption, creation of tearing modes, and finally magnetic islands.


Sign in / Sign up

Export Citation Format

Share Document