Wave propagation in a moving plasma. Part 2. Wave propagation along, and plasma motion normal to, the magnetic field

1974 ◽  
Vol 12 (2) ◽  
pp. 271-278
Author(s):  
D. N. Srivastava

This paper analyses the dispersion relation for a collisionless moving electron plasma, when the direction of motion is normal to the magnetic field and that of the wave propagation along the magnetic field. It is shown that, in strong magnetic fields, the one continuous allowed band of the left-handed wave (of the stationary plasma) splits into two, and the right-handed wave shows a second resonance besides the cyclotron resonance. In weak magnetic fields, the lefthanded wave develops a backward wave band, which shows resonance at its low frequency edge, and the right-handed wave also develops an extra band of propagation. The effect of the motion of the plasma, on waves of frequency much lower than the plasma frequency, is identical to a doppler shift, but, on those of frequency much higher than that, is negligible.

1974 ◽  
Vol 11 (3) ◽  
pp. 389-395 ◽  
Author(s):  
D. N. Srivastava

The dispersion relation for a collisionless moving electron plasma, when the direction of motion is along the magnetic field, and that of the wave propagation normal to the magnetic field, is analysed. It is shown that in small magnetic fields the ordinary wave develops a new band of backward waves below the plasma frequency. When the frequency of the wave is higher than the plasma frequency, the effect of the motion of the plasma is identical to a deviation of the direction of propagation.


2019 ◽  
Vol 630 ◽  
pp. A65 ◽  
Author(s):  
S. Bagnulo ◽  
J. D. Landstreet

We report the discovery of weak magnetic fields in three white dwarfs within the local 20 pc volume (WD 0816−310, WD 1009−184, and WD 1532+129), and we confirm the magnetic nature of a fourth star (WD 2138−332) in which we had previously detected a field at a 3σ level. The spectra of all these white dwarfs are characterised by the presence of metal lines and lack of H and He lines, that is, they belong to the spectral class DZ. The polarisation signal of the Ca II H+K lines of WD 1009−184 is particularly spectacular, with an amplitude of 20% that is due to the presence of a magnetic field with an average line-of-sight component of 40 kG. We have thus established that at least 40% of the known DZ white dwarfs with an He-rich atmosphere contained in the 20 pc volume have a magnetic field, while further observations are needed to establish whether the remaining DZ white dwarfs in the same volume are magnetic or not. Metal lines in the spectra of DZ white dwarfs are thought to have originated by accretion from rocky debris, and it might be argued that a link exists between metal accretion and higher occurrence of magnetism. However, we are not able to distinguish whether the magnetic field and the presence of a polluted atmosphere have a common origin, or if it is the presence of metal lines that allows us to detect a higher frequency of magnetic fields in cool white dwarfs, which would otherwise have featureless spectra. We argue that the new highly sensitive longitudinal field measurements that we have made in recent years are consistent with the idea that the magnetic field appears more frequently in older than in younger white dwarfs.


2009 ◽  
Vol 6 (41) ◽  
pp. 1193-1205 ◽  
Author(s):  
Sue-Re Harris ◽  
Kevin B. Henbest ◽  
Kiminori Maeda ◽  
John R. Pannell ◽  
Christiane R. Timmel ◽  
...  

The scientific literature describing the effects of weak magnetic fields on living systems contains a plethora of contradictory reports, few successful independent replication studies and a dearth of plausible biophysical interaction mechanisms. Most such investigations have been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing. A recent study, of magnetic responses in the model plant Arabidopsis thaliana , however, stands out; it has a clear hypothesis—that seedling growth is magnetically sensitive as a result of photoinduced radical-pair reactions in cryptochrome photoreceptors—tested by measuring several cryptochrome-dependent responses, all of which proved to be enhanced in a magnetic field of intensity 500 μT. The potential importance of this study in the debate on putative effects of extremely low-frequency electromagnetic fields on human health prompted us to subject it to the ‘gold standard’ of independent replication. With experimental conditions chosen to match those of the original study, we have measured hypocotyl lengths and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 μT magnetic field, with simultaneous control experiments at 50 μT. Additionally, we have determined hypocotyl lengths of plants grown in 50 μT, 1 mT and approximately 100 mT magnetic fields (with zero-field controls), measured gene ( CHS , HY5 and GST ) expression levels, investigated blue-light intensity effects and explored the influence of sucrose in the growth medium. In no case were consistent, statistically significant magnetic field responses detected.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haijiao Ji ◽  
Yueting Pan ◽  
Haiwen Liu

Abstract Electron in gapless bilayer graphene can form quasi-bound states when a circular symmetric potential is created in bilayer graphene. These quasi-bound states can be adjusted by tuning the radius and strength of the potential barrier. We investigate the evolution of quasi-bound states spectra in the circular n–p junction of bilayer graphene under the magnetic field numerically. The energy levels of opposite angular momentum split and the splitting increases with the magnetic field. Moreover, weak magnetic fields can slightly shift the energy levels of quasi-bound states. While strong magnetic fields induce additional resonances in the local density states, which originates from Landau levels. We demonstrate that these numerical results are consistent with the semiclassical analysis based on Wentzel–Kramers–Brillouin approximation. Our results can be verified experimentally via scanning tunneling microscopy measurements.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Fei Qin ◽  
Dongmei Yan

Development of magnetism based nondestructive testing technology and the Microelectronic mechanical system require accurate computation of perturbed magnetic fields generated by mechanical stress. In this paper, based on the linearized magnetoelastic theory, the governing equations and continuity conditions to determine the perturbed magnetic fields were formulated for the case of weak external magnetic fields such as the earth’s magnetic field. Under those weak magnetic fields, the effect of the magnetic fields on mechanical deformation was neglected. As a result, the interaction between the deformation and the magnetic field was simplified. The effect of deformation on the perturbed magnetic field was taken into account by introducing the displacement gradient into the boundary conditions that the perturbed field should satisfy. As examples, analytic solutions of the perturbed magnetic field of infinite plates with and without a round hole, which are subjected to tensile stresses and weak external magnetic fields, were obtained by the approach presented. The results show that the perturbed magnetic fields induced by stress are three orders less in magnitude of intensity than that of magnetic fields without stress, and some prominent local features such as that has more peaks and decays more rapidly in the radial direction than the case of stress free that are predicted by the solutions.


2000 ◽  
Vol 15 (04) ◽  
pp. 523-534
Author(s):  
A. PÉREZ MARTÍNEZ ◽  
H. PÉREZ ROJAS ◽  
D. OLIVA AGÜERO ◽  
A. AMÉZAGA HECHAVARRÍA ◽  
S. RODRÍGUEZ ROMO

We compute the dispersion curves for neutrinos propagating in a very dense electroweak plasma, in magnetic fields of order [Formula: see text]. The neutrino self-energy is calculated in the one-loop approximation. The dispersion equation is solved for motion parallel and perpendicular to the external magnetic field. We obtain an effective neutrino mass which increases with the magnetic field, up to values B where threshold energy for creation of W± pairs (out from the thermal background) is reached.


2020 ◽  
Vol 640 ◽  
pp. A4 ◽  
Author(s):  
T. Felipe ◽  
C. R. Sangeetha

Context. In stratified atmospheres, acoustic waves can only propagate if their frequency is higher than the cutoff value. The determination of the cutoff frequency is fundamental for several topics in solar physics, such as evaluating the contribution of the acoustic waves to the chromospheric heating or the application of seismic techniques. However, different theories provide different cutoff values. Aims. We developed an alternative method to derive the cutoff frequency in several standard solar models, including various quiet-Sun and umbral atmospheres. The effects of magnetic field and radiative losses on the cutoff are examined. Methods. We performed numerical simulations of wave propagation in the solar atmosphere using the code MANCHA. The cutoff frequency is determined from the inspection of phase-difference spectra computed between the velocity signal at two atmospheric heights. The process is performed by choosing pairs of heights across all the layers between the photosphere and the chromosphere to derive the vertical stratification of the cutoff in the solar models. Result. The cutoff frequency predicted by the theoretical calculations departs significantly from the measurements obtained from the numerical simulations. In quiet-Sun atmospheres, the cutoff shows a strong dependence on the magnetic field for adiabatic wave propagation. When radiative losses are taken into account, the cutoff frequency is greatly reduced and the variation of the cutoff with the strength of the magnetic field is lower. The effect of the radiative losses in the cutoff is necessary to understand recent quiet-Sun and sunspot observations. In the presence of inclined magnetic fields, our numerical calculations confirm that the cutoff frequency is reduced as a result of the reduced gravity experienced by waves that propagate along field lines. An additional reduction is also found in regions with significant changes in the temperature, which is due to the lower temperature gradient along the path of field-guided waves. Conclusions. Our results show solid evidence that the cutoff frequency in the solar atmosphere is stratified. The cutoff values are not correctly captured by theoretical estimates. In addition, most of the widely used analytical cutoff formulae neglect the effect of magnetic fields and radiative losses, whose role is critical for determining the evanescent or propagating nature of the waves.


Author(s):  
L.J Silvers

Magnetic fields are known to reside in many astrophysical objects and are now believed to be crucially important for the creation of phenomena on a wide variety of scales. However, the role of the magnetic field in the bodies that we observe has not always been clear. In certain situations, the importance of a magnetic field has been overlooked on the grounds that the large-scale magnetic field was believed to be too weak to play an important role in the dynamics. In this article I discuss some of the recent developments concerning magnetic fields in stars, planets and accretion discs. I choose to emphasize some of the situations where it has been suggested that weak magnetic fields may play a more significant role than previously thought. At the end of the article, I list some of the questions to be answered in the future.


2015 ◽  
Vol 220-221 ◽  
pp. 355-360
Author(s):  
Michał Nowicki ◽  
Roman Szewczyk

This paper presents application of magnetovision scanning system for detection of dangerous objects in weak magnetic fields. Measurement system was developed to study the magnetic field vector distributions. The measurements of the Earth’s field disturbances caused by dangerous ferromagnetic objects were carried out. The ability for passive detection of hidden dangerous objects and determine their location was demonstrated.


2013 ◽  
Vol 23 ◽  
pp. 106-110
Author(s):  
LUCA NASO ◽  
JOHN MILLER ◽  
WLODEK KLUŹNIAK

Accretion disks are ubiquitous in the universe and it is generally accepted that magnetic fields play a pivotal role in accretion-disk physics. The spin history of millisecond pulsars, which are usually classified as magnetized neutron stars spun up by an accretion disk, depends sensitively on the magnetic field structure, and yet highly idealized models from the 80s are still being used for calculating the magnetic field components. We present a possible way of improving the currently used models with a semi-analytic approach. The resulting magnetic field profile of both the poloidal and the toroidal component can be very different from the one suggested previously. This might dramatically change our picture of which parts of the disk tend to spin the star up or down.


Sign in / Sign up

Export Citation Format

Share Document