scholarly journals Self-consistent model of electron drift mode turbulence

2008 ◽  
Vol 74 (1) ◽  
pp. 21-33 ◽  
Author(s):  
ZHANNA N. ANDRUSHCHENKO ◽  
MARTIN JUCKER ◽  
VLADIMIR P. PAVLENKO

AbstractThe nonlinear dynamics of magnetic electron drift mode turbulence are outlined and the generation of large-scale magnetic structures in a non-uniform magnetized plasma by turbulent Reynolds stress is demonstrated. The loop-back of large-scale flows on the microturbulence is elucidated and the modulation of the electron drift mode turbulence spectrum in a medium with slowly varying parameters is presented. The wave kinetic equation in the presence of large-scale flows is derived and it can be seen that the small-scale turbulence and the large-scale structures form a self-regulating system. Finally, it is shown by the use of quasilinear theory that the shearing of microturbulence by the flows can be described by a diffusion equation in k-space and the corresponding diffusion coefficients are calculated.

2016 ◽  
Vol 28 (1) ◽  
pp. 015110 ◽  
Author(s):  
Lionel Agostini ◽  
Michael Leschziner ◽  
Datta Gaitonde

2019 ◽  
Vol 4 (12) ◽  
Author(s):  
C. Marchioli ◽  
H. Bhatia ◽  
G. Sardina ◽  
L. Brandt ◽  
A. Soldati

Author(s):  
Scott Martin ◽  
Aleksandar Jemcov ◽  
Björn de Ruijter

Here the premixed Conditional Moment Closure (CMC) method is used to model the recent PIV and Raman turbulent, enclosed reacting methane jet data from DLR Stuttgart [1]. The experimental data has a rectangular test section at atmospheric pressure and temperature with a single inlet jet. A jet velocity of 90 m/s is used with an adiabatic flame temperature of 2,064 K. Contours of major species, temperature and velocities along with velocity rms values are provided. The conditional moment closure model has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes [2]. The simplified CMC model used here falls into the class of table lookup turbulent combustion models where the chemical kinetics are solved offline over a range of conditions and stored in a table that is accessed by the CFD code. Most table lookup models are based on the laminar 1-D flamelet equations, which assume the small scale turbulence does not affect the reaction rates, only the large scale turbulence has an effect on the reaction rates. The CMC model is derived from first principles to account for the effects of small scale turbulence on the reaction rates, as well as the effects of the large scale mixing, making it more versatile than other models. This is accomplished by conditioning the scalars with the reaction progress variable. By conditioning the scalars and accounting for the small scale mixing, the effects of turbulent fluctuations of the temperature on the reaction rates are more accurately modeled. The scalar dissipation is used to account for the effects of the small scale mixing on the reaction rates. The original premixed CMC model used a constant value of scalar dissipation, here the scalar dissipation is conditioned by the reaction progress variable. The steady RANS 3-D version of the open source CFD code OpenFOAM is used. Velocity, temperature and species are compared to the experimental data. Once validated, this CFD turbulent combustion model will have great utility for designing lean premixed gas turbine combustors.


2014 ◽  
Vol 955-959 ◽  
pp. 2425-2429 ◽  
Author(s):  
Yun Fei Li ◽  
Jian Guo Yang ◽  
Yan Yan Wang ◽  
Xiao Guo Wang

The purpose of this study is to construct a turbulent aggregation device which has specific performance for fine particle aggregation in flue gas. The device consists of two cylindrical pipes and an array of vanes. The pipes extending fully and normal to the gas stream induce large scale turbulence in the form of vortices, while the vanes downstream a certain distance from the pipes induce small one. The process of turbulent aggregation was numerically simulated by coupling the Eulerian multiphase model and population balance model together with a proposed aggregation kernel function taking the size and inertia of particles into account, and based on data of particles’ size distribution measured from the flue of one power plant. The results show that the large scale turbulence generated by pipes favours the aggregation of smaller particles (smaller than 1μm) notably, while the small scale turbulence benefits the aggregation of bigger particles (larger than 1μm) notably and enhances the uniformity of particle size distribution among different particle groups.


2002 ◽  
Vol 14 (7) ◽  
pp. 2475 ◽  
Author(s):  
L. Danaila ◽  
F. Anselmet ◽  
R. A. Antonia

Author(s):  
Angela Nastevska ◽  
Jovana Jovanova ◽  
Mary Frecker

Abstract Large scale structures can benefit from the design of compliant joints that can provide flexibility and adaptability. A high level of deformation is achieved locally with the design of flexures in compliant mechanisms. Additionally, by introducing contact-aided compliant mechanisms, nonlinear bending stiffness is achieved to make the joints flexible in one direction and stiff in the opposite one. All these concepts have been explored in small scale engineering design, but they have not been applied to large scale structures. In this paper the design of a large scale compliant mechanism is proposed for novel design of a foldable shipping container. The superelasticity of nickel titanium is shown to be beneficial in designing the joints of the compliant mechanism.


2008 ◽  
Vol 26 (10) ◽  
pp. 3077-3088 ◽  
Author(s):  
L. van Driel-Gesztelyi ◽  
G. D. R. Attrill ◽  
P. Démoulin ◽  
C. H. Mandrini ◽  
L. K. Harra

Abstract. The apparent contradiction between small-scale source regions of, and large-scale coronal response to, coronal mass ejections (CMEs) has been a long-standing puzzle. For some, CMEs are considered to be inherently large-scale events – eruptions in which a number of flux systems participate in an unspecified manner, while others consider magnetic reconnection in special global topologies to be responsible for the large-scale response of the lower corona to CME events. Some of these ideas may indeed be correct in specific cases. However, what is the key element which makes CMEs large-scale? Observations show that the extent of the coronal disturbance matches the angular width of the CME – an important clue, which does not feature strongly in any of the above suggestions. We review observational evidence for the large-scale nature of CME source regions and find them lacking. Then we compare different ideas regarding how CMEs evolve to become large-scale. The large-scale magnetic topology plays an important role in this process. There is amounting evidence, however, that the key process is magnetic reconnection between the CME and other magnetic structures. We outline a CME evolution model, which is able to account for all the key observational signatures of large-scale CMEs and presents a clear picture how large portions of the Sun become constituents of the CME. In this model reconnection is driven by the expansion of the CME core resulting from an over-pressure relative to the pressure in the CME's surroundings. This implies that the extent of the lower coronal signatures match the final angular width of the CME.


1990 ◽  
Vol 142 ◽  
pp. 60-61
Author(s):  
Sydney D'Silva ◽  
Arnab Rai Choudhuri

Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri(1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitudes only if the velocities within the giant cells are unrealistically large or if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.


2019 ◽  
Vol 867 ◽  
pp. 146-194 ◽  
Author(s):  
G. L. Richard ◽  
A. Duran ◽  
B. Fabrèges

We derive a two-dimensional depth-averaged model for coastal waves with both dispersive and dissipative effects. A tensor quantity called enstrophy models the subdepth large-scale turbulence, including its anisotropic character, and is a source of vorticity of the average flow. The small-scale turbulence is modelled through a turbulent-viscosity hypothesis. This fully nonlinear model has equivalent dispersive properties to the Green–Naghdi equations and is treated, both for the optimization of these properties and for the numerical resolution, with the same techniques which are used for the Green–Naghdi system. The model equations are solved with a discontinuous Galerkin discretization based on a decoupling between the hyperbolic and non-hydrostatic parts of the system. The predictions of the model are compared to experimental data in a wide range of physical conditions. Simulations were run in one-dimensional and two-dimensional cases, including run-up and run-down on beaches, non-trivial topographies, wave trains over a bar or propagation around an island or a reef. A very good agreement is reached in every cases, validating the predictive empirical laws for the parameters of the model. These comparisons confirm the efficiency of the present strategy, highlighting the enstrophy as a robust and reliable tool to describe wave breaking even in a two-dimensional context. Compared with existing depth-averaged models, this approach is numerically robust and adds more physical effects without significant increase in numerical complexity.


Sign in / Sign up

Export Citation Format

Share Document