scholarly journals Available energy and ground states of collisionless plasmas

2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Per Helander

The energy budget of a collisionless plasma subject to electrostatic fluctuations is considered, and the excess of thermal energy over the minimum accessible to it under various constraints that limit the possible forms of plasma motion is calculated. This excess measures how much thermal energy is ‘available’ for conversion into plasma instabilities, and therefore constitutes a nonlinear measure of plasma stability. A distribution function with zero available energy defines a ‘ground state’ in the sense that its energy cannot decrease by any linear or nonlinear plasma motion. In a Vlasov plasma with small density and temperature fluctuations, the available energy is proportional to the mean square of these quantities, and exceeds the corresponding energy in ideal or resistive magnetohydrodynamics. If the first or second adiabatic invariant is conserved, ground states generally have inhomogeneous density and temperature. Magnetically confined plasmas are usually not in any ground state, but certain types of stellarator plasmas are so with respect to fluctuations that conserve both these adiabatic invariants, making the plasma linearly and nonlinearly stable to such fluctuations. Similar stability properties can also be enjoyed by plasmas confined by a dipole magnetic field.

2020 ◽  
Vol 86 (2) ◽  
Author(s):  
Per Helander

The concept of the available energy of a collisionless plasma is discussed in the context of magnetic confinement. The available energy quantifies how much of the plasma energy can be converted into fluctuations (including nonlinear ones) and is thus a measure of plasma stability, which can be used to derive linear and nonlinear stability criteria without solving an eigenvalue problem. In a magnetically confined plasma, the available energy is determined by the density and temperature profiles as well as the magnetic geometry. It also depends on what constraints limit the possible forms of plasma motion, such as the conservation of adiabatic invariants and the requirement that the transport be ambipolar. A general method based on Lagrange multipliers is devised to incorporate such constraints in the calculation of the available energy, and several particular cases are discussed for which it can be calculated explicitly. In particular, it is shown that it is impossible to confine a plasma in a Maxwellian ground state relative to perturbations with frequencies exceeding the ion bounce frequency.


2003 ◽  
Vol 15 (03) ◽  
pp. 271-312 ◽  
Author(s):  
FUMIO HIROSHIMA

One electron system minimally coupled to a quantized radiation field is considered. It is assumed that the quantized radiation field is massless, and no infrared cutoff is imposed. The Hamiltonian, H, of this system is defined as a self-adjoint operator acting on L2 (ℝ3) ⊗ ℱ ≅ L2 (ℝ3; ℱ), where ℱ is the Boson Fock space over L2 (ℝ3 × {1, 2}). It is shown that the ground state, ψg, of H belongs to [Formula: see text], where N denotes the number operator of ℱ. Moreover, it is shown that for almost every electron position variable x ∈ ℝ3 and for arbitrary k ≥ 0, ‖(1 ⊗ Nk/2) ψg (x)‖ℱ ≤ Dk e-δ|x|m+1 with some constants m ≥ 0, Dk > 0, and δ > 0 independent of k. In particular [Formula: see text] for 0 < β < δ/2 is obtained.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
K. V. Lezhnin ◽  
F. F. Kamenets ◽  
T. Zh. Esirkepov ◽  
S. V. Bulanov

In contrast to hydrodynamic vortices, vortices in a plasma contain an electric current circulating around the centre of the vortex, which generates a magnetic field localized inside. Using computer simulations, we demonstrate that the magnetic field associated with the vortex gives rise to a mechanism of dissipation of the vortex pair in a collisionless plasma, leading to fast annihilation of the magnetic field with its energy transforming into the energy of fast electrons, secondary vortices and plasma waves. Two major contributors to the energy damping of a double vortex system, namely, magnetic field annihilation and secondary vortex formation, are regulated by the size of the vortex with respect to the electron skin depth, which scales with the electron$\unicode[STIX]{x1D6FE}$factor,$\unicode[STIX]{x1D6FE}_{e}$, as$R/d_{e}\propto \unicode[STIX]{x1D6FE}_{e}^{1/2}$. Magnetic field annihilation appears to be dominant in mildly relativistic vortices, while for the ultrarelativistic case, secondary vortex formation is the main channel for damping of the initial double vortex system.


2013 ◽  
Vol 13 (5&6) ◽  
pp. 393-429
Author(s):  
Matthew Hastings

We consider the entanglement properties of ground states of Hamiltonians which are sums of commuting projectors (we call these commuting projector Hamiltonians), in particular whether or not they have ``trivial" ground states, where a state is trivial if it is constructed by a local quantum circuit of bounded depth and range acting on a product state. It is known that Hamiltonians such as the toric code only have nontrivial ground states in two dimensions. Conversely, commuting projector Hamiltonians which are sums of two-body interactions have trivial ground states\cite{bv}. Using a coarse-graining procedure, this implies that any such Hamiltonian with bounded range interactions in one dimension has a trivial ground state. In this paper, we further explore the question of which Hamiltonians have trivial ground states. We define an ``interaction complex" for a Hamiltonian, which generalizes the notion of interaction graph and we show that if the interaction complex can be continuously mapped to a $1$-complex using a map with bounded diameter of pre-images then the Hamiltonian has a trivial ground state assuming one technical condition on the Hamiltonians holds (this condition holds for all stabilizer Hamiltonians, and we additionally prove the result for all Hamiltonians under one assumption on the $1$-complex). While this includes the cases considered by Ref.~\onlinecite{bv}, we show that it also includes a larger class of Hamiltonians whose interaction complexes cannot be coarse-grained into the case of Ref.~\onlinecite{bv} but still can be mapped continuously to a $1$-complex. One motivation for this study is an approach to the quantum PCP conjecture. We note that many commonly studied interaction complexes can be mapped to a $1$-complex after removing a small fraction of sites. For commuting projector Hamiltonians on such complexes, in order to find low energy trivial states for the original Hamiltonian, it would suffice to find trivial ground states for the Hamiltonian with those sites removed. Such trivial states can act as a classical witness to the existence of a low energy state. While this result applies for commuting Hamiltonians and does not necessarily apply to other Hamiltonians, it suggests that to prove a quantum PCP conjecture for commuting Hamiltonians, it is worth investigating interaction complexes which cannot be mapped to $1$-complexes after removing a small fraction of points. We define this more precisely below; in some sense this generalizes the notion of an expander graph. Surprisingly, such complexes do exist as will be shown elsewhere\cite{fh}, and have useful properties in quantum coding theory.


Author(s):  
Bartosz Bieganowski ◽  
Simone Secchi

Abstract We consider the nonlinear fractional problem $$\begin{aligned} (-\Delta )^{s} u + V(x) u = f(x,u)&\quad \hbox {in } \mathbb {R}^N \end{aligned}$$ ( - Δ ) s u + V ( x ) u = f ( x , u ) in R N We show that ground state solutions converge (along a subsequence) in $$L^2_{\mathrm {loc}} (\mathbb {R}^N)$$ L loc 2 ( R N ) , under suitable conditions on f and V, to a ground state solution of the local problem as $$s \rightarrow 1^-$$ s → 1 - .


1992 ◽  
Vol 06 (13) ◽  
pp. 793-801 ◽  
Author(s):  
PAVOL FARKAŠOVSKÝ

We have studied the ground state properties of the Falicov-Kimball model with unconstrained hopping. It is shown that the model still behaves non-trivially, although it no longer depends on the actual lattice structure and dimensionality of the system. For arbitrary ion configurations with total number of ions Ni, we have been able to determine domains in the plane of the chemical potentials of electrons and ions where these ion configurations are ground states. The phase diagram of the model is discussed.


2016 ◽  
Vol 19 (5) ◽  
pp. 1141-1166 ◽  
Author(s):  
Weizhu Bao ◽  
Qinglin Tang ◽  
Yong Zhang

AbstractWe propose efficient and accurate numerical methods for computing the ground state and dynamics of the dipolar Bose-Einstein condensates utilising a newly developed dipole-dipole interaction (DDI) solver that is implemented with the non-uniform fast Fourier transform (NUFFT) algorithm. We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term and present the corresponding two-dimensional (2D) model under a strongly anisotropic confining potential. Different from existing methods, the NUFFT based DDI solver removes the singularity by adopting the spherical/polar coordinates in the Fourier space in 3D/2D, respectively, thus it can achieve spectral accuracy in space and simultaneously maintain high efficiency by making full use of FFT and NUFFT whenever it is necessary and/or needed. Then, we incorporate this solver into existing successful methods for computing the ground state and dynamics of GPE with a DDI for dipolar BEC. Extensive numerical comparisons with existing methods are carried out for computing the DDI, ground states and dynamics of the dipolar BEC. Numerical results show that our new methods outperform existing methods in terms of both accuracy and efficiency.


1987 ◽  
Vol 01 (05n06) ◽  
pp. 231-237 ◽  
Author(s):  
P.L. Iske ◽  
W.J. Caspers

The ground state(s) of a Hamiltonian, introduced by Affleck, Kennedy, Lieb and Tasaki, in connection with the Valence-Bond-Solid (VBS) states, are explicitly given for the spin-1 chains. The structure of these ground states is a rather simple one. For a closed chain we find a unique ground state; for the open chain we find a fourfold-degenerate ground state. The ground state correlation function for the ring is calculated.


2017 ◽  
Vol 39 (1) ◽  
pp. 201-224
Author(s):  
TAMARA KUCHERENKO ◽  
CHRISTIAN WOLF

We consider a continuous dynamical system $f:X\rightarrow X$ on a compact metric space $X$ equipped with an $m$-dimensional continuous potential $\unicode[STIX]{x1D6F7}=(\unicode[STIX]{x1D719}_{1},\ldots ,\unicode[STIX]{x1D719}_{m}):X\rightarrow \mathbb{R}^{m}$. We study the set of ground states $GS(\unicode[STIX]{x1D6FC})$ of the potential $\unicode[STIX]{x1D6FC}\cdot \unicode[STIX]{x1D6F7}$ as a function of the direction vector $\unicode[STIX]{x1D6FC}\in S^{m-1}$. We show that the structure of the ground state sets is naturally related to the geometry of the generalized rotation set of $\unicode[STIX]{x1D6F7}$. In particular, for each $\unicode[STIX]{x1D6FC}$ the set of rotation vectors of $GS(\unicode[STIX]{x1D6FC})$ forms a non-empty, compact and connected subset of a face $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ of the rotation set associated with $\unicode[STIX]{x1D6FC}$. Moreover, every ground state maximizes entropy among all invariant measures with rotation vectors in $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$. We further establish the occurrence of several quite unexpected phenomena. Namely, we construct for any $m\in \mathbb{N}$ examples with an exposed boundary point (that is, $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ being a singleton) without a unique ground state. Further, we establish the possibility of a line segment face $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ with a unique but non-ergodic ground state. Finally, we establish the possibility that the set of rotation vectors of $GS(\unicode[STIX]{x1D6FC})$ is a non-trivial line segment.


Sign in / Sign up

Export Citation Format

Share Document