scholarly journals On annihilation of the relativistic electron vortex pair in collisionless plasmas

2018 ◽  
Vol 84 (6) ◽  
Author(s):  
K. V. Lezhnin ◽  
F. F. Kamenets ◽  
T. Zh. Esirkepov ◽  
S. V. Bulanov

In contrast to hydrodynamic vortices, vortices in a plasma contain an electric current circulating around the centre of the vortex, which generates a magnetic field localized inside. Using computer simulations, we demonstrate that the magnetic field associated with the vortex gives rise to a mechanism of dissipation of the vortex pair in a collisionless plasma, leading to fast annihilation of the magnetic field with its energy transforming into the energy of fast electrons, secondary vortices and plasma waves. Two major contributors to the energy damping of a double vortex system, namely, magnetic field annihilation and secondary vortex formation, are regulated by the size of the vortex with respect to the electron skin depth, which scales with the electron$\unicode[STIX]{x1D6FE}$factor,$\unicode[STIX]{x1D6FE}_{e}$, as$R/d_{e}\propto \unicode[STIX]{x1D6FE}_{e}^{1/2}$. Magnetic field annihilation appears to be dominant in mildly relativistic vortices, while for the ultrarelativistic case, secondary vortex formation is the main channel for damping of the initial double vortex system.

1988 ◽  
Vol 197 ◽  
pp. 571-594 ◽  
Author(s):  
J. Homa ◽  
M. Lucas ◽  
D. Rockwell

A vortex pair, impulsively generated from a planar nozzle, is shown to have a degree of vorticity concentration in good agreement with inviscid theory, providing well-posed initial conditions for interaction with basic types of bodies (cylinders and plates). The scale of these bodies ranges from the same order as, to over an order of magnitude smaller than, the scale (distance between centres) of the incident vortex pair.The fundamental case of a (primary) vortex pair symmetrically incident upon a very small cylinder shows rapid growth of a secondary vortex pair. These secondary vortices quickly attain a circulation of the same order as that of the corresponding primary vortices within a distance smaller than the lengthscale of the primary vortex pair. At this location, the temporal variation of integrated vorticity of primary and secondary vortices attains a maximum simultaneously. This zero phase shift between arrival of vorticity maxima provides the basis for formation of counter-rotating, primary–secondary vortex pairs, where both the primary and secondary vortices move at the same phase speed.Visualization shows that the mode of secondary vortex formation is highly sensitive to the degree of symmetry of the initial encounter of the incident vortex pair with the body. The symmetrical mode of (in-phase) secondary vortex formation shows very rapid growth of large-scale secondary vortices; their development is relatively independent of the particulars of body shape and scale. On the other hand, the antisymmetrical mode takes two basic forms: large-scale secondary vortex formation, with the phase shift between their formation determined by the lengthscale of the body; and small-scale, antisymmetrical shedding of secondary vortices from the body occurring for a body lengthscale an order of magnitude smaller than that of the incident vortex pair. Correspondingly, there are several types of distortion of the cores and trajectories of the primary (incident) vortices.


1971 ◽  
Vol 6 (3) ◽  
pp. 467-493 ◽  
Author(s):  
Yusuke Kato† ◽  
Masayoshi Tajiri ◽  
Tosiya Taniuti

This paper is concerned with existence conditions for steady hydromagnetic shock waves propagating in a collisionless plasma along an applied magnetic field. The electrostatic waves are excluded. The conditions are based on the requirement that solutions of the Vlasov-Maxwell equations deviate from a uniform state ahead of a wave. They are given as the conditions on the upstream flow velocity in the wave frame (i.e. in the form of inequalities among the upstream flow velocity and some critical velocities). The conditions crucially depend on the pressure anisotropy, and demonstrate possibilities of exacting collisionless shock waves for high β plasmas.


1975 ◽  
Vol 13 (1) ◽  
pp. 189-191 ◽  
Author(s):  
E. Infeld ◽  
G. Rowlands

Demehenko & Hussein (1973) discussed some properties of nonlinear magneto-sonic waves in a collisionless plasma. The relevant equation describing the space dependence x of the magnetic field may be written in the form d2y/dx2+f(y) = 0, (1) where f(y) is a nonlinear function of y only.


Calculations of Azbel-Kaner line shapes when the magnetic field is tipped out of the surface have been carried out in a number of cases for both the free electron model and an arbitrary Fermi surface with mass spread. For small angles of tip the results substantiate the Doppler shift theory advanced by Koch, Stradling & Kip and provide a consistent explanation of the observed peak shifts or splitting in all cases. Arguments are presented that at larger tip angles the overall absorption will decrease with increasing field, and the original resonance may become inverted, owing to the removal of non-stationary electrons from the skin depth. At large tip angles (5° or so) inverted and doubled resonances observed with parallel polarization are shown to arise from ‘field splashes’ set up by drifting electrons from the limiting points, regardless of the nature of the Fermi surface. Apparently normal resonances observed at very large tip angles are shown to arise from so-called ‘cylinder sections’ where d A /dk 2 H = 0 and v D = 0, A and v D being the area of the orbit in k space and the drift velocity respectively.


2009 ◽  
Vol 75 (4) ◽  
pp. 545-561 ◽  
Author(s):  
SHIKHA MISRA ◽  
S. K. MISHRA

AbstractIn this paper we present a theoretical investigation of the growth/propagation of a ring ripple, superposed on a Gaussian electromagnetic beam propagating along the direction of magnetic field in a magnetoplasma. The nature of propagation of the ripple is analysed in a paraxial-like approximation by radial expansion of the dielectric function, corresponding to the composite (Gaussian and ripple) electric field profile of the beam around the position of the maximum of the ripple. The two cases of collisional plasmas (with negligible thermal conduction) and collisionless plasmas (dominant ponderomotive nonlinearity) are considered. The effect of the magnetic field on the critical curves and focusing/defocusing of the ripple are studied and discussed.


2004 ◽  
Vol 22 (6) ◽  
pp. 2081-2096 ◽  
Author(s):  
V. Génot ◽  
P. Louarn ◽  
F. Mottez

Abstract. Investigating the process of electron acceleration in auroral regions, we present a study of the temporal evolution of the interaction of Alfvén waves (AW) with a plasma inhomogeneous in a direction transverse to the static magnetic field. This type of inhomogeneity is typical of the density cavities extended along the magnetic field in auroral acceleration regions. We use self-consistent Particle In Cell (PIC) simulations which are able to reproduce the full nonlinear evolution of the electromagnetic waves, as well as the trajectories of ions and electrons in phase space. Physical processes are studied down to the ion Larmor radius and electron skin depth scales. We show that the AW propagation on sharp density gradients leads to the formation of a significant parallel (to the magnetic field) electric field (E-field). It results from an electric charge separation generated on the density gradients by the polarization drift associated with the time varying AW E-field. Its amplitude may reach a few percents of the AW E-field. This parallel component accelerates electrons up to keV energies over a distance of a few hundred Debye lengths, and induces the formation of electron beams. These beams trigger electrostatic plasma instabilities which evolve toward the formation of nonlinear electrostatic structures (identified as electron holes and double layers). When the electrostatic turbulence is fully developed we show that it reduces the further wave/particle exchange. This sequence of mechanisms is analyzed with the program WHAMP, to identify the instabilities at work and wavelet analysis techniques are used to characterize the regime of energy conversions (from electromagnetic to electrostatic structures, from large to small length scales). This study elucidates a possible scenario to account for the particle acceleration and the wave dissipation in inhomogeneous plasmas. It would consist of successive phases of acceleration along the magnetic field, the development of an electrostatic turbulence, the thermalization and the heating of the plasma. Space plasma physics (charged particle motion and acceleration; numerical studies).


2013 ◽  
Vol 380-384 ◽  
pp. 4845-4848
Author(s):  
Zhi Gang Zhao ◽  
Cun Li Dai ◽  
Lun Wu Zeng

Using the resistively shunted junction model, we study the magnetic field induced dynamic melting transitions of a current-driven vortex system in two-dimensional weakly disordered Josephson junction arrays at zero temperature. From the unified model simulations, we find that the intrinsic quantum vortex liquid (QVL) phenomenon, which consistent with the recent experimental reports in disordered and superconducting MoGe films. The enhancement of critical current in the QVL phase arises from intrinsic quantum fluctuations in the moving vortex flow.


1972 ◽  
Vol 8 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Youshinori Inoue ◽  
Noriaki Kimura

Nonlinear hydromagnetic waves propagating along a magnetic field in a cold collisionless plasma are investigated. A criterion for ergodicity of the waves is obtained using the usual method of analytical dynamics. According to this criterion, it is found that, if a parameter b00 is a rational number, the wave is periodic, and that, if b00 is an irrational number, the wave is ergodic. Therefore, the waves are almost always ergodic, i.e. the trajectory of the wave fills up a region in the phase plane of the magnetic field. On the other hand, periodic solutions can exist only with measure zero.


1966 ◽  
Vol 21 (8) ◽  
pp. 1285-1296 ◽  
Author(s):  
M. Steenbeck ◽  
F. Krause

In a foregoing paper 1 the effects of a turbulent motion on magnetic fields were investigated. Especially turbulence was treated under the influence of CORIOLiS-forces and gradients of density and/or turbulence intensity. It was shown that on these conditions the average cross-product of velocity and magnetic field has a non-vanishing component parallel to the average magnetic field. Here we give the consequences of this effect for rotating, electrically conducting spheres.At first a sphere rotating with constant angular velocity is investigated. The quadratic effect provides for dynamo maintainance of the magnetic fields. A field of dipol-type has the weakest condition for maintainance. Applications to the magnetic field of the earth show a good agreement with the conceptions of the physical state of the earth’s core.For a second model differential rotation is included. We have also dynamo maintainance. Since we have to assume that generally the angular velocity is a function decreasing with the distance from the centre of the sphere, the calculations show that we have a preferred self-excited build-up of a quadrupol-type field. This model may be applicable to magnetic stars.Finally we look for dynamo maintainance of alternating fields. We consider the skin-depth to be small compared with the radius of the sphere, then we have plane geometry. The existence of periodical solutions is proved. Applications to the general magnetic field of the sun, which has a period of 22 years, are discussed.


Azbel’-Kaner cyclotron resonance in copper at 136 Gc/s has been observed by a calorimetric method. Masses are presented with the magnetic field lying in a (112) plane and tipping effects investigated with the magnetic field along a <111> direction. Beyond a certain tip angle, the absorption exhibits a pronounced ‘negative magnetoresistance’ due to the removal of non­-stationary resonant orbits by tipping from the skin depth, and at smaller tip angles the resonant minima shift to lower fields as expected. The spectrometer was calibrated by a substitution method and the amplitude of the oscillations compared with theoretical estimates. Finally, a pronounced rise in absorption at low fields was observed, and arguments are presented that this is due to retardation effects.


Sign in / Sign up

Export Citation Format

Share Document