Small-scale distribution patterns of two cirratulid species with a description of a peculiar early juvenile stage

2013 ◽  
Vol 93 (7) ◽  
pp. 1761-1771
Author(s):  
Andrea Cosentino

An assemblage of cirratulids in a confined marine basin (Mediterranean Sea) was investigated at small spatio-temporal scales in an experiment in which artificial granules of expanded fire-clay were used as a bare substratum for colonization. Analysis of core samples of 3.5 l undisturbed natural sediments (source area) and equal volumes of artificial substratum (new settlement area), plunged into the sea bottom were carried out from May to July 2008 after 0, 15, 30 and 60 days.Caulleriella bioculatashowed the highest total mean density of 10.1 ± 5.8 N l−1in the natural sediment, and the lowest at 0.13 ± 0.08 N l−1in the artificial substratum, with a marked temporal decrease. Individuals were not strongly aggregated and were found in a deeper sediment layer. The density of largeCirriformia tentaculatawas 0.5 ± 0.3 N l−1, with individuals more aggregated and confined to shallower sediments, versus 0.10 ± 0.06 N l−1but found deeper in the artificial substratum; temporal trends were not straightforward for this species. The adult stage of sedentary cirratulids appeared to actively move into the new available substratum from the neighbouring sediments. An early cirratulid juvenile stage was observed in both microhabitats at a comparable density of 1.8 ± 2.8 N l−1with highly aggregated individuals (cohorts). The peculiar morphology of branchiae, the threadlike body shape and the multivariate morphological differences between two sub-populations settled in the different substrata are reported for these problematic specimens.

2021 ◽  
Vol 5 (1) ◽  
pp. 462-472
Author(s):  
Gemechu Yigezu Ofgeha ◽  
Muluneh Woldetsadik Abshire

Insights to broadly argued research gap on lack of climate studies at micro-scale considering unique features of an area, this paper intended to examine agro-ecological level spatio-temporal trends and variability in rainfall and temperature in Anger watershed of southwestern Ethiopia. The gridded data managed by the Ethiopia National Meteorological Services Agency (NMSA) for 1983-2018 were used. The Mann-Kendall test for trend analysis and different variability measures were used. Questionnaire and FGD data on community perceptions gathered from 214 households and elders were analysed descriptively and qualitatively. The study reveals the consistent increasing trends in temperature; and high variability and insignificant but increasing rainfall trend. The trends and variability show spatio-temporal differences along agro-ecologies. The watershed is characterized by moderate to high rainfall coefficient of variations, significant years of high rainfall concentration, and considerable negative annual rainfall anomalies; that the variability was severe in woinadega followed by kolla agro-ecology. Although, the perceptions on trends, variability and its implications show difference across agro-ecology, the propensity to increased temperature, unclear rainfall trend and significant inter-annual and seasonal variability were witnessed. Unpredictability of rainfall time, concentrations in kiremt, and unexpected rain during harvesting was major challenges resulting multifaceted impacts on the small-scale farmers’ livelihoods.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Ahmad Hasnain ◽  
Yong Zha ◽  
Muhammad Zaffar Hashmi ◽  
Fatima Rahim ◽  
Yufeng He ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian-Yu Li ◽  
Yan-Ting Chen ◽  
Meng-Zhu Shi ◽  
Jian-Wei Li ◽  
Rui-Bin Xu ◽  
...  

AbstractA detailed knowledge on the spatial distribution of pests is crucial for predicting population outbreaks or developing control strategies and sustainable management plans. The diamondback moth, Plutella xylostella, is one of the most destructive pests of cruciferous crops worldwide. Despite the abundant research on the species’s ecology, little is known about the spatio-temporal pattern of P. xylostella in an agricultural landscape. Therefore, in this study, the spatial distribution of P. xylostella was characterized to assess the effect of landscape elements in a fine-scale agricultural landscape by geostatistical analysis. The P. xylostella adults captured by pheromone-baited traps showed a seasonal pattern of population fluctuation from October 2015 to September 2017, with a marked peak in spring, suggesting that mild temperatures, 15–25 °C, are favorable for P. xylostella. Geostatistics (GS) correlograms fitted with spherical and Gaussian models showed an aggregated distribution in 21 of the 47 cases interpolation contour maps. This result highlighted that spatial distribution of P. xylostella was not limited to the Brassica vegetable field, but presence was the highest there. Nevertheless, population aggregations also showed a seasonal variation associated with the growing stage of host plants. GS model analysis showed higher abundances in cruciferous fields than in any other patches of the landscape, indicating a strong host plant dependency. We demonstrate that Brassica vegetables distribution and growth stage, have dominant impacts on the spatial distribution of P. xylostella in a fine-scale landscape. This work clarified the spatio-temporal dynamic and distribution patterns of P. xylostella in an agricultural landscape, and the distribution model developed by geostatistical analysis can provide a scientific basis for precise targeting and localized control of P. xylostella.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karen M. Holcomb ◽  
Robert C. Reiner ◽  
Christopher M. Barker

Abstract Background Aerial applications of insecticides that target adult mosquitoes are widely used to reduce transmission of West Nile virus to humans during periods of epidemic risk. However, estimates of the reduction in abundance following these treatments typically focus on single events, rely on pre-defined, untreated control sites and can vary widely due to stochastic variation in population dynamics and trapping success unrelated to the treatment. Methods To overcome these limitations, we developed generalized additive models fitted to mosquito surveillance data collected from CO2-baited traps in Sacramento and Yolo counties, California from 2006 to 2017. The models accounted for the expected spatial and temporal trends in the abundance of adult female Culex (Cx.) tarsalis and Cx. pipiens in the absence of aerial spraying. Estimates for the magnitude of deviation from baseline abundance following aerial spray events were obtained from the models. Results At 1-week post-treatment with full spatial coverage of the trapping area by pyrethroid or pyrethrin products, Cx. pipiens abundance was reduced by a mean of 52.4% (95% confidence intrval [CI] − 65.6, − 36.5%) while the use of at least one organophosphate pesticide resulted in a mean reduction of 76.2% (95% CI − 82.8, − 67.9%). For Cx. tarsalis, at 1-week post-treatment with full coverage there was a reduction in abundance of 30.7% (95% CI − 54.5, 2.5%). Pesticide class was not a significant factor contributing to the reduction. In comparison, repetition of spraying over three to four consecutive weeks resulted in similar estimates for Cx. pipiens and estimates of somewhat smaller magnitude for Cx. tarsalis. Conclusions Aerial adulticides are effective for achieving a rapid short-term reduction of the abundance of the primary West Nile virus vectors, Cx. tarsalis and Cx. pipiens. A larger magnitude of reduction was estimated in Cx. pipiens, possibly due to the species’ focal distribution. Effects of aerial sprays on Cx. tarsalis populations are likely modulated by the species’ large dispersal ability, population sizes and vast productive larval habitat present in the study area. Our modeling approach provides a new way to estimate effects of public health pesticides on vector populations using routinely collected observational data and accounting for spatio-temporal trends and contextual factors like weather and habitat. This approach does not require pre-selected control sites and expands upon past studies that have focused on the effects of individual aerial treatment events.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Yi Lou ◽  
Guanyi Yin ◽  
Yue Xin ◽  
Shuai Xie ◽  
Guanghao Li ◽  
...  

In the rapid process of urbanization in China, arable land resources are faced with dual challenges in terms of quantity and quality. Starting with the change in the coupling coordination relationship between the input and output on arable land, this study applies an evaluation model of the degree of coupling coordination between the input and output (D_CCIO) on arable land and deeply analyzes the recessive transition mechanism and internal differences in arable land use modes in 31 provinces on mainland China. The results show that the total amount and the amount per unit area of the input and output on arable land in China have presented different spatio-temporal trends, along with the mismatched movement of the spatial barycenter. Although the D_CCIO on arable land increases slowly as a whole, 31 provinces show different recessive transition mechanisms of arable land use, which is hidden in the internal changes in the input–output structure. The results of this study highlight the different recessive transition patterns of arable land use in different provinces of China, which points to the outlook for higher technical input, optimized planting structure, and the coordination of human-land relationships.


CATENA ◽  
2021 ◽  
Vol 200 ◽  
pp. 105160
Author(s):  
Xunming Wang ◽  
Diwen Cai ◽  
Siyu Chen ◽  
Junpeng Lou ◽  
Fa Liu ◽  
...  

2008 ◽  
Vol 54 (185) ◽  
pp. 315-323 ◽  
Author(s):  
Helgard Anschütz ◽  
Daniel Steinhage ◽  
Olaf Eisen ◽  
Hans Oerter ◽  
Martin Horwath ◽  
...  

AbstractSpatio-temporal variations of the recently determined accumulation rate are investigated using ground-penetrating radar (GPR) measurements and firn-core studies. The study area is located on Ritscherflya in western Dronning Maud Land, Antarctica, at an elevation range 1400–1560 m. Accumulation rates are derived from internal reflection horizons (IRHs), tracked with GPR, which are connected to a dated firn core. GPR-derived internal layer depths show small relief along a 22 km profile on an ice flowline. Average accumulation rates are about 190 kg m−2 a−1 (1980–2005) with spatial variability (1σ) of 5% along the GPR profile. The interannual variability obtained from four dated firn cores is one order of magnitude higher, showing 1σ standard deviations around 30%. Mean temporal variations of GPRderived accumulation rates are of the same magnitude or even higher than spatial variations. Temporal differences between 1980–90 and 1990–2005, obtained from two dated IRHs along the GPR profile, indicate temporally non-stationary processes, linked to spatial variations. Comparison with similarly obtained accumulation data from another coastal area in central Dronning Maud Land confirms this observation. Our results contribute to understanding spatio-temporal variations of the accumulation processes, necessary for the validation of satellite data (e.g. altimetry studies and gravity missions such as Gravity Recovery and Climate Experiment (GRACE)).


Sign in / Sign up

Export Citation Format

Share Document