Leaf-litter decomposition of the mangrove species Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle

Author(s):  
Rene G. Lima ◽  
Karine D. Colpo

This study evaluated the decomposition process of leaf litter from the main Brazilian mangrove species Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. Senescent leaves were collected, dried and placed in nylon bags with different mesh sizes (fine: 2 × 2 mm and coarse: 8 × 8 mm). The bags were distributed over the sediment, and replicates of each species and mesh size were collected periodically over 4 months. In the laboratory, the dry weight of the samples was measured, and the decomposition coefficient (k) for each species and mesh size was obtained over time. All species showed a rapid decomposition rate at the beginning of the experiment, followed by a slower but steady rate of decomposition over time. The rate of leaf litter decomposition was highest in A. schaueriana, intermediate in L. racemosa and lowest in R. mangle. The difference was mainly linked to the activity and abundance of detritivores, together with the different litter quality of the species, which determined their palatability and probably influenced the decomposition process.

2008 ◽  
Vol 17 (4) ◽  
pp. 417-421 ◽  
Author(s):  
Aung Nanda ◽  
Takashi Asaeda ◽  
Takeshi Fujino ◽  
Kian Siong ◽  
Takashi Nakajima

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2350
Author(s):  
Thendo Mutshekwa ◽  
Ross N. Cuthbert ◽  
Ryan J. Wasserman ◽  
Florence M. Murungweni ◽  
Tatenda Dalu

Leaf litter contributes to the functioning of aquatic ecosystems through allochthonous inputs of carbon, nitrogen, and other elements. Here, we examine leaf litter nutrient inputs and decomposition associated with four plant species using a mesocosm approach. Native sycamore fig Ficus sycomorus L., and silver cluster–leaf Terminalia sericea Burch. ex DC. decomposition dynamics were compared to invasive tickberry Lantana camara L. and guava Psidium guajava L., whereby phosphate, nitrate, nitrite, silicate, and ammonium releases were quantified over time. Leaf inputs significantly reduced pH, with reductions most marked by invasive L. camara. Conductivity was heightened by all leaf input treatments, except native T. sericea. Leaf inputs significantly affected all nutrient levels monitored in the water over time, except for silicate. In particular, leaf litter from invasive L. camara drove significantly increased nutrient concentrations compared to other native plant species, whilst effects of invasive P. guajava were less statistically clear. The end weights of the leaf litter demonstrated decomposition differences among the species types, following a decreasing order of P. guajava > T. sericea > F. sycomorus > L. camara, further suggesting high organic inputs from invasive L. camara. The study results highlight that differential leaf litter decomposition rates of four plant species can play a significant role in nutrient release, in turn altering aquatic ecosystem productivity. However, these effects likely depend on species-specific differences, rather than between invasive–native species generally. Shifting terrestrial plant communities may alter aquatic community composition, but specific effects are likely associated with leaf traits.


2016 ◽  
Vol 64 (1) ◽  
pp. 305 ◽  
Author(s):  
Andressa Pelozo ◽  
Maria Regina T. Boeger ◽  
Carolina Sereneski-de-Lima ◽  
Patricia Soffiatti

The initial phase of a plant life cycle is a short and critical period, when individuals are more vulnerable to environmental factors. The morphological and anatomical study of seedlings and saplings leaf type, enables the understanding of species strategies of fundamental importance in their establishment and survival. The objective of this study was to analyze the structure of seedlings and saplings leaf types of three mangrove species, Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, to understand their early life adaptive strategies to the environment. A total of 30 fully expanded cotyledons (A. schaueriana and L. racemosa), 30 leaves of seedlings, and 30 leaves of saplings of each species were collected from a mangrove area in Guaratuba Bay, Paraná State, Brazil. Following standard methods, samples were prepared for morphological (leaf dry mass, density, thickness) and anatomical analysis (epidermis and sub-epidermal layers, stomata types, density of salt secretion glands, palisade and spongy parenchyma thickness). To compare leaf types among species one-way ANOVA and Principal Component Analysis were used, while Cluster Analysis evaluated differences between the species. We observed significant structural differences among species leaf types. A. schaueriana showed the thickest cotyledons, while L. racemosa presented a dorsiventral structure. Higher values of the specific leaf area were observed for seedlings leaves of A. schaueriana, cotyledons of L. racemosa and saplings leaves of A. schaueriana and R. mangle. Leaf density was similar to cotyledons and seedlings leaves in A. schaueriana and L. racemosa, while R. mangle had seedlings leaves denser than saplings. A. schaueriana and R. mangle showed hypostomatic leaves, while L. racemosa amphistomatic; besides, A. chaueriana showed diacytic stomata, while L. racemosa anomocytic, and R. mangle ciclocytic. Seedling leaves were thicker in R. mangle (535 µm) and L. racemosa (520 µm) than in A. schaueriana (470.3 µm); while saplings leaves were thicker in L. racemosa (568.3 µm) than in A. schaueriana seedlings (512.4 µm) and R. mangle (514.6 µm). Besides, seedlings leaves palisade parenchyma showed increasing thickness in L. racemosa (119.2 µm) < A. schaueriana (155.5 µm) < R. mangle (175.4 µm); while in saplings leaves as follows R. mangle (128.4 µm) < A. schaueriana (183.4 µm) < L. racemosa (193.9 µm). Similarly, seedlings leaves spongy parenchyma thickness values were as follows A. schaueriana (182.6 µm) = R. mangle (192.8 µm) < L. racemosa (354.4 µm); while in saplings were A. schaueriana (182.6 µm) = R. mangle (187.3 µm) < L. racemosa (331.3 µm). The analyzed traits, in different combinations, represent morphological adjustments of leaf types to reduce water loss, eliminate salt excess, increase the absorption of light, allowing a higher efficiency on the maintenance of physiological processes in this initial growth stage.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Hasanuzzaman ◽  
Mahmood Hossain

Mangifera indica,Zizyphus jujuba,Litchi chinensis, andArtocarpus heterophyllusare the most common cropland agroforest horticultural tree species of Bangladesh. This study focused on leaf litter decomposition and nutrient (N, P, and K) dynamics during the decomposition process. This experiment was conducted for 180 days by using litter bag technique during dry and wet seasons. Mass loss was the highest (49% and 57%) forA. heterophyllusand the lowest (25%) was found forL. chinensis. The highest initial rates (0.75% and 2.35%/day) of decomposition were observed forZ. jujubaand the lowest (0.50% and 0.79%/day) forL. chinensis. The highest decay constant was observed forA. heterophyllus(2.14 and 2.34) and the lowest (0.88 and 0.94) forL. chinensis. Leaf litter of all the studied species showed a similar pattern (K > N > P) of nutrient release during the decomposition process.Zizyphus jujubashowed comparatively higher return of N, P, and K than others. However, a significant (P<0.05) higher amount of mass loss, rate of decomposition, decay constant, and amount of nutrient return from leaf litter were observed during the wet season.


Sign in / Sign up

Export Citation Format

Share Document