Active relocation in lepadomorph barnacles

Author(s):  
Michael Kugele ◽  
Andrew B. Yule

Comparative morphology of the cement delivery apparatus of three lepadomorph barnacles indicates that the lepadid Lepas anatifera is unable to relocate voluntarily, whereas the two scalpellids Pollicipes pollicipes and Capitulum mitella can. Mean relocation speeds of up to 50 μm d−1 were measured for both scalpellids, which are probably underestimates of maximal rates given the absence of a directed stimulus. In the laboratory neither gravity nor unidirectional flow proved effective stimuli in directing scalpellid relocation. The two scalpellid species use quite different mechanisms to effect relocation at a leading edge of the base, although both slough basal material at the trailing edge. It is suggested that basal growth effectively accounts for the mobility of P. pollicipes but C. mitella is likely to employ muscular activity.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


2021 ◽  
Author(s):  
Pritam Ghosh ◽  
Kathakali Bhattacharyya

<p>We examine how the deformation profile and kinematic evolutionary paths of two major shear zones with prolonged deformation history and large translations differ with varying structural positions along its transport direction in an orogenic wedge. We conduct this analysis on multiple exposures of the internal thrusts from the Sikkim Himalayan fold thrust belt, the Pelling-Munsiari thrust (PT), the roof thrust of the Lesser Himalayan duplex (LHD), and the overlying Main Central thrust (MCT). These two thrusts are regionally folded due to growth of the LHD and are exposed at different structural positions. The hinterlandmost exposures of the MCT and PT zones lie in the trailing parts of the duplex, while the foreland-most exposures of the same studied shear zones lie in the leading part of the duplex, and thus have recorded a greater connectivity with the duplex. The thicknesses of the shear zones progressively decrease toward the leading edge indicating variation in deformation conditions. Thickness-displacement plot reveals strain-softening from all the five studied MCT and the PT mylonite zones. However, the strain-softening mechanisms varied along its transport direction with the hinterland exposures recording dominantly dislocation-creep, while dissolution-creep and reaction-softening are dominant in the forelandmost exposures. Based on overburden estimation, the loss of overburden on the MCT and the PT zones is more in the leading edge (~26km and ~15km, respectively) than in the trailing edge (~10km and ~17km, respectively), during progressive deformation. Based on recalibrated recrystallized quartz grain thermometer (Law, 2014), the estimated deformation temperatures in the trailing edge are higher (~450-650°C) than in the leading edge (350-550°C) of the shear zones. This variation in the deformation conditions is also reflected in the shallow-crustal deformation structures with higher fracture intensity and lower spacing in the leading edge exposures of the shear zones as compared to the trailing edge exposures.</p><p>The proportion of mylonitic domains and micaceous minerals within the exposed shear zones increase and grain-size of the constituent minerals decreases progressively along the transport direction. This is also consistent with progressive increase in mean R<sub>s</sub>-values toward leading edge exposures of the same shear zones. Additionally, the α-value (stretch ratio) gradually increases toward the foreland-most exposures along with increasing angular shear strain. Vorticity estimates from multiple incremental strain markers indicate that the MCT and PT zones generally record a decelerating strain path. Therefore, the results from this study are counterintuitive to the general observation of a direct relationship between higher Rs-value and higher pure-shear component. We explain this observation in the context of the larger kinematics of the orogen, where the leading edge exposures have passed through the duplex structure, recording the greatest connectivity and most complete deformation history, resulting in the weakest shear zone that is also reflected in the deformation profiles and strain attributes. This study demonstrates that the same shear zone records varying deformation profile, strain and kinematic evolutionary paths due to varying deformation conditions and varying connectivity to the underlying footwall structures during progressive deformation of an orogenic wedge.</p>


1980 ◽  
Vol 85 (1) ◽  
pp. 129-136 ◽  
Author(s):  
C. P. ELLINGTON

1. All of the wing fringe cilia of Thrips physapus, except those along the hindwing leading edge, pivot in elongated sockets which lock them into two positions. 2. The wings lie parallel over the abdomen when not in use, with the cilia locked in the closed position at an angle of 15-20° to the wing axis. The closing of the fringes prevents entanglement of the trailing edge cilia and lateral projection of the forewing leading edge cilia. 3. During flight the cilia are locked in the open position, doubling the wing area. The locking force is stronger than the combined aerodynamic and inertial forces on the cilia. 4. The fringes are opened by abdominal combing and closed by tibial combing. 5. The same morphological features are found in other members of the sub-order Terebrantia. Parallel wings at rest are characteristic of this suborder, and the collapsible fringe system is viewed as an effective method for parking the wings. 6. The fringes of the sub-order Tubulifera are not collapsible. The wings overlap on the abdomen at rest and a similar parking problem does not arise.


Author(s):  
Kazutoshi Matsuda ◽  
Kusuo Kato ◽  
Kouki Arise ◽  
Hajime Ishii

According to the results of conventional wind tunnel tests on rectangular cross sections with side ratios of B/D = 2–8 (B: along-wind length (m), D: cross-wind length (m)), motion-induced vortex excitation was confirmed. The generation of motion-induced vortex excitation is considered to be caused by the unification of separated vortices from the leading edge and secondary vortices at the trailing edge [1]. Spring-supported test for B/D = 1.18 was conducted in a closed circuit wind tunnel (cross section: 1.8 m high×0.9 m wide) at Kyushu Institute of Technology. Vibrations were confirmed in the neighborhoods of reduced wind speeds Vr = V/fD = 2 and Vr = 8 (V: wind speed (m/s), f: natural frequency (Hz)). Because the reduced wind speed in motion-induced vortex excitation is calculated as Vr = 1.67×B/D = 1.67×1.18 = 2.0 [1], vibrations around Vr = 2 were considered to be motion-induced vortex excitation. According to the smoke flow visualization result for B/D = 1.18 which was carried out by the authors, no secondary vortices at the trailing edge were formed, although separated vortices from the leading edge were formed at the time of oscillation at the onset wind speed of motion-induced vortex excitation, where aerodynamic vibrations considered to be motion-induced vortex excitation were confirmed. It was suggested that motion-induced vortex excitation might possibly occur in the range of low wind speeds, even in the case of side ratios where secondary vortices at trailing edge were not confirmed. In this study, smoke flow visualizations were performed for ratios of B/D = 0.5–2.0 in order to find out the relation between side ratios of rectangular cross sections and secondary vortices at trailing edge in motion-induced vortex excitation. The smoke flow visualizations around the model during oscillating condition were conducted in a small-sized wind tunnel at Kyushu Institute of Technology. Experimental Reynolds number was Re = VD/v = 1.6×103. For the forced-oscillating amplitude η, the non-dimensional double amplitudes were set as 2η/D = 0.02–0.15. Spring-supported tests were also carried out in order to obtain the response characteristics of the models.


1998 ◽  
Vol 360 ◽  
pp. 41-72 ◽  
Author(s):  
J. M. ANDERSON ◽  
K. STREITLIEN ◽  
D. S. BARRETT ◽  
M. S. TRIANTAFYLLOU

Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.


2015 ◽  
Vol 779 ◽  
pp. 751-775 ◽  
Author(s):  
K. B. M. Q. Zaman ◽  
A. F. Fagan ◽  
J. E. Bridges ◽  
C. A. Brown

The interaction between an 8:1 aspect ratio rectangular jet and a flat plate, placed parallel to the jet, is addressed in this study. At high subsonic conditions and for certain relative locations of the plate, a resonance takes place with accompanying audible tones. Even when the tone is not audible the sound pressure level spectra are often marked by conspicuous peaks. The frequencies of these peaks, as functions of the plate’s length, its location relative to the jet as well as jet Mach number, are studied in an effort to understand the flow mechanism. It is demonstrated that the tones are not due to a simple feedback between the nozzle exit and the plate’s trailing edge; the leading edge also comes into play in determining the frequency. With parametric variation, it is found that there is an order in the most energetic spectral peaks; their frequencies cluster in distinct bands. The lowest frequency band is explained by an acoustic feedback involving diffraction at the plate’s leading edge. Under the resonant condition, a periodic flapping motion of the jet column is seen when viewed in a direction parallel to the plate. Phase-averaged Mach number data on a cross-stream plane near the plate’s trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear ‘axis switching’ takes place for the time-averaged cross-section of the jet that does not occur otherwise for a non-resonant condition.


1970 ◽  
Vol 42 (3) ◽  
pp. 561-584 ◽  
Author(s):  
S. N. Brown ◽  
K. Stewartson

A study is made of the laminar flow in the neighbourhood of the trailing edge of an aerofoil at incidence. The aerofoil is replaced by a flat plate on the assumption that leading-edge stall has not taken place. It is shown that the critical order of magnitude of the angle of incidence α* for the occurrence of separation on one side of the plate is$\alpha^{*} = O(R^{\frac{1}{16}})$, whereRis a representative Reynolds number, for incompressible flow, and α* =O(R−¼) for supersonic flow. The structure of the flow is determined by the incompressible boundary-layer equations but with unconventional boundary conditions. The complete solution of these fundamental equations requires a numerical investigation of considerable complexity which has not been undertaken. The only solutions available are asymptotic solutions valid at distances from the trailing edge that are large in terms of the scaled variable of orderR−⅜, and a linearized solution for the boundary layer over the plate which gives the antisymmetric properties of the aerofoil at incidence. The value of α* for which separation occurs is the trailing-edge stall angle and an estimate is obtained from the asymptotic solutions. The linearized solution yields an estimate for the viscous correction to the circulation determined by the Kutta condition.


Author(s):  
Khaled J. Hammad

Particle Image Velocimetry (PIV) was used to study the flow structure and turbulence, upstream, over, and downstream a shallow open cavity. Three sets of PIV measurements, corresponding to a turbulent incoming boundary layer and a cavity length-to-depth ratio of four, are reported. The cavity depth based Reynolds numbers were 21,000; 42,000; and 54,000. The selected flow configuration and well characterized inflow conditions allow for straightforward assessment of turbulence models and numerical schemes. All mean flow field measurements display a large flow recirculation region, spanning most of the cavity and a smaller, counter-rotating, secondary vortex, immediately downstream of the cavity leading edge. The Galilean decomposed instantaneous velocity vector fields, clearly demonstrate two distinct modes of interaction between the free shear and the cavity trailing edge. The first corresponds to a cascade of vortical structures emanating from the tip of the leading edge of the cavity that grow in size as they travel downstream and directly interact with the trailing edge, i.e., impinging vortices. The second represents vortices that travel above the trailing edge of the cavity, i.e., non-impinging vortices. In the case of impinging vortices, a strong, large scale region of recirculation forms inside the cavity and carries the flow disturbances, arising from the impingement of vortices on the trailing edge of the cavity, upstream in a manner that interacts with and influences the flow as it separates from the cavity leading edge.


Sign in / Sign up

Export Citation Format

Share Document