scholarly journals Dietary and anthropometric factors affecting the potential of gut microbiota to utilize dietary fiber and produce short-chain fatty acids

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Anna M. Malinowska ◽  
Marcin Schmidt ◽  
Malgorzata Majcher ◽  
Hanna Przydatek ◽  
Marta Szaban ◽  
...  

AbstractSome species of gut bacteria produce short-chain fatty acids (SCFAs) from dietary fiber—mainly acetate, propionate, and butyrate. The composition of human gut microbiota is dependent on dietary intake and health status. The aim of this study was to assess the effect of diet and anthropometric parameters on the potential of gut microbiota to metabolize dietary fiber and produce SCFA.A group of 200 men and women aged 31 to 50 years old participated in the study. The diet was assessed using three-day dietary records and the dietary pattern was determined using score methods. The potential to utilize water-insoluble fiber was assessed by measuring the β-glucosidase enzymatic activity of dissolved feces. To estimate the potential to metabolize water-soluble dietary fiber, cultures containing feces and pectin were incubated under anaerobic conditions for 24 hours. The amounts of fiber, acetic acid, propionic acid, and butyric acid before and after incubation were measured.Pectin utilization correlated positively with the amount of energy intake from fat (r = 0.19) and with the intake of nuts and seeds (r = 0.17) and was negatively correlated with the amount of energy from complex carbohydrates (r = -0.16) and its sources, such as refined grain products (r = -0.15). The dietary pattern did not affect the potential of the gut microbiota to metabolize pectin, but did influence the potential to digest insoluble dietary fiber, as the subjects following the western dietary pattern had lower potential than those following the rational pattern. β-glucosidase activity correlated positively with the intake of dietary fiber (r = 0.19) and intake of its sources, such as fruits (r = 0.18), vegetables (r = 0.21), and nuts and seeds (r = 0.18); it correlated negatively with nonalcoholic beverage intake (r = -0.15) and sugar and honey intake (r = -0.16). The potential to synthesize acetic acid correlated negatively with dietary indices and dietary fiber intake (r = -0.18). The potential to synthesize propionic acid correlated negatively with hip and waist circumference (r = -0.14, -0.15, respectively). The potentials to synthesize both propionic and butyric acid were affected by the intake of nuts and seeds (r = 0.18, 0.21, respectively).Diet affects the potential of gut microbiota to utilize dietary fiber and to produce SCFAs. The impact of anthropometry parameters was only seen on the potential to synthesize propionic acid.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shaodan Sun ◽  
Yang Yang ◽  
Xiaojie Lin ◽  
Peiwen Chen ◽  
Liyan Ye ◽  
...  

Background. Qiweibaizhu decoction (QBD), a classic Chinese herbal formula, has been widely used for treating diarrhea in infants and children with spleen deficiency syndrome for centuries, but its mechanism of action remains unclear. The gut microbiota, short-chain fatty acids (SCFAs), and intestinal mucus are closely associated with diarrhea. Methods. In this study, the composition of the gut microbiota in diarrheal rats was analyzed by 16S rDNA amplicon sequencing. The concentrations of colon SCFAs were determined using gas chromatography-mass spectrometry (GC-MS). The expression of mucin 2 (MUC2) in the colon was detected by immunofluorescence. Results. Diarrhea significantly changed the diversity and structure of the gut microbiota and disrupted the mucus barrier in juvenile rats. QBD did not significantly change the diversity and structure of the intestinal flora, but it enhanced the increasing tendencies of Verrucomicrobia and Akkermansia and decreased the abundance of Turicibacter ( P = 0.037 ) and Flavonifractor ( P = 0.043 ). QBD tends to repair the mucus layer and promote MUC2 expression in juvenile rats with diarrhea. Moreover, S. boulardii significantly increased the abundance of Parasutterella ( P = 0.043 ). In addition, QBD treatment tends to increase the propionic acid concentration during diarrhea, but its levels of acetic acid, propionic acid, butyric acid, and total SCFAs were lower than those in the S. boulardii group. Conclusion. S. boulardii significantly increased the abundance of Parasutterella, leading to increased production of acetic acid, propionic acid, and butyric acid, consequently leading to alleviation of diarrhea. In comparison, QBD affected diarrhea via regulation of the intestinal flora, especially by increasing the abundance of Verrucomicrobia and Akkermansia, resulting in mucus barrier repair, protection of the intestines, and treatment of diarrhea.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Kanako Omori ◽  
Hiroki Miyakawa ◽  
Aya Watanabe ◽  
Yuki Nakayama ◽  
Yijin Lyu ◽  
...  

Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.


2002 ◽  
Vol 87 (S2) ◽  
pp. S163-S168 ◽  
Author(s):  
M. Nyman

The bulking index (i.e. the increase in faecal fresh weight in gram per gram indigestible carbohydrate ingested) with oligofructose and inulin is similar to that produced with other easily fermented fibres such as pectins and gums. Most studies in man have been performed at a level of 15 g/d and more investigations on lower intakes are needed to appoint the least intake for an effect. Concerning short-chain fatty acids (SCFA) most studies have been using oligofructose and points at an increased butyric acid formation in the caecum of rats. In one study on rats with inulin high caecal proportions of propionic acid were obtained. As inulin has a higher molecular weight than oligofructose it might be speculated if this could be a reason to the different SCFA-profile formed. No effects on faecal concentrations of SCFA in humans have been revealed with inulin and oligofructose, which neither is expected as most of the SCFA formed during the fermentation already has been absorbed or utilized by the colonic mucosa.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Min Wu ◽  
Tian Tian ◽  
Qiang Mao ◽  
Tao Zou ◽  
Chan-juan Zhou ◽  
...  

Abstract Mounting evidence suggests that gut microbiota can play an important role in pathophysiology of depression, but its specific molecular mechanisms are still unclear. This study was conducted to explore the associations between changes in neurotransmitters and short-chain fatty acids (SCFAs) and altered gut microbiota in depressed mice. Here, the chronic restraint stress (CRS) model of depression was built. The classical behavioral tests were conducted to assess the depressive-like behaviors of mice. The 16S rRNA gene sequence extracted from fecal samples was used to assess the gut microbial composition. Liquid and gas chromatography mass spectroscopy were used to identify neurotransmitters in hypothalamus and SCFAs in fecal samples, respectively. Finally, 29 differential bacteria taxa between depressed mice and control mice were identified, and the most differentially abundant bacteria taxa were genus Allobaculum and family Ruminococcaceae between the two groups. The acetic acid, propionic acid, pentanoic acid, norepinephrine, 5-HIAA and 5-HT were significantly decreased in depressed mice compared to control mice. Genus Allobaculum was found to be significantly positively correlated with acetic acid and 5-HT. Taken together, these results provided novel microbial and metabolic frameworks for understanding the role of microbiota-gut-brain axis in depression, and suggested new insights to pave the way for novel therapeutic methods.


2018 ◽  
Vol 44 (1) ◽  
pp. 6 ◽  
Author(s):  
Marcelo Dal Pozzo ◽  
Julio Viegas ◽  
Gilberto Vilmar Kozloski ◽  
Cristiano Miguel Stefanello ◽  
Alisson Minozzo da Silveira ◽  
...  

Background: The addition of adsorbents in foods has been the strategy used by nutritionists to reduce the toxic effects of mycotoxins in animals. Mycotoxins are found in a range of foods and commonly they present variations in the chemical structure therefore, it has been appropriate to include adsorbents from different sources in the diet of ruminants. However, few researches were conducted in order to better understand the interaction of adsorbents on ruminal fermentation. Our objective in this study was to investigate the possible effects of two adsorbent products on bovine ruminal fermentation. One consists of 65% of β-glucan (β-glu), originating cell wall of Saccharomyces cerevisiae and used at a concentration of 1% and natural sodium montmorillonite (MMT) at a concentration of 5%.Materials, Methods & Results: The effects of β-glu adsorbents (1%) and MMC (5%) in culture medium that simulated ruminal fermentation were evaluated. Bottles, with a capacity of 120 mL, were used to be filled with substrate such as maize and ryegrass hay ground, nutrient solution (medium of Menke), liquid extracted rumen fistulated bovine and the two adsorbents evaluated, totaling 50 mL. The experiment was conducted with three treatments, named after: control (Cont), β-glu and MMT. In the control treatment adsorbents were not added. Six replicates were used for each treatment and two trials were conducted. One of the tests aimed to determine the fermentation kinetics by means of the gas production after 72 h’ incubation and quantifying the production of methane (CH4) at 48h. While another test aimed to quantify the production of short chain fatty acids (SCFA) - acetic, propionic and butyric acid - and the production of ammonia (NH3) in 24 h incubation. All assays were measured by gas chromatography. The highest total SCFA concentration was observed in β-glu treatment (67.71 mM) significantly superior to CONT (57.7 mM) treatment and MMT (53.28 mM), which was significantly lower than the β-glu treatment, but similar to CONT. The average representation (%) of acetic acid for the treatment MMT (62.9%) was significantly higher than the β-glu treatment (61.0%). The average proportions of propionic acid were similar between treatments, while the average representation (%) of butyric acid production was significantly higher for the β-glu treatment (13.1%) compared to CONT treatments (11.3%) and MMT (11.4%). The amount of NH3 was significantly reduced in MMT (9.6 mM) treatment compared to β-glu treatments (12.2 mM) and CONT (11.3 mM). In another test, the greater volume of gas (mL) was produced by β-glu treatment (103.4 mL), which was significantly greater than the treatments CONT (89.0 mL) and MMT (91.6 mL). The lag time, i.e. the time taken by the bacteria inoculum to develop lead-through in the substrate, in the MMT treatment took 6.2 h, slowing significantly compared to CONT treatments (4.8 h) and β Glu (4.33 h). The concentration of CH4 was significantly lower in MMT treatment (33.0%) compared to the CONT treatments (36.3%) and β-glu (35.68%).Discussion: The glucans which constitute the main cell wall S. cerevisae are the β-glucans with β-1-3 and β-1,6 glycosidic bonds. The largest and most significant concentration of SCFA and gas volume in the β-glu treatment can be explained by the degradation of β-glucans by rumen bacteria. The possible reason of reduced concentration of methane (CH4) in samples collected during 48 h of incubation in MMT treatment stands on the reduction in symbiotic activity of methanogenic bacteria and protozoa. Also, the possible reason of reduction in the concentration of ammonia (NH3) in MMT treatment could be associated to damage on protozoa with proteolytic activity. Our results showed that the amount of montmorillonite in rumen fluid influenced negatively the fermentative activity, therefore, delaying the colonization of bacteria in rumen substrate composed of maize and ryegrass hay. Moreover, the use of β-glu (1%) significantly increased the amount of short chain fatty acids such as, acetic acid and butyric acid, with the exception of propionic acid.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuefang Wang ◽  
Juan Li ◽  
Na Li ◽  
Kunyu Guan ◽  
Di Yin ◽  
...  

Background: The production of intestinal gases and fecal short-chain fatty acids (SCFAs) by infant gut microbiota may have a significant impact on their health, but information about the composition and volume of intestinal gases and SCFA profiles in preterm infants is scarce.Objective: This study examined the change of the composition and volume of intestinal gases and SCFA profiles produced by preterm infant gut microbiota in vitro during the first 4 weeks of life.Methods: Fecal samples were obtained at five time points (within 3 days, 1 week, 2 weeks, 3 weeks, and 4 weeks) from 19 preterm infants hospitalized in the neonatal intensive care unit (NICU) of Shanghai Children's Hospital, Shanghai Jiao Tong University between May and July 2020. These samples were initially inoculated into four different media containing lactose (LAT), fructooligosaccharide (FOS), 2′-fucosyllactose (FL-2), and galactooligosaccharide (GOS) and thereafter fermented for 24 h under conditions mimicking those of the large intestine at 37.8°C under anaerobic conditions. The volume of total intestinal gases and the concentrations of individual carbon dioxide (CO2), hydrogen (H2), methane (CH4), and hydrogen sulfide (H2S) were measured by a gas analyzer. The concentrations of total SCFAs, individual acetic acid, propanoic acid, butyric acid, isobutyric acid, pentanoic acid, and valeric acid were measured by gas chromatography (GC).Results: The total volume of intestinal gases (ranging from 0.01 to 1.64 ml in medium with LAT; 0–1.42 ml with GOS; 0–0.91 ml with FOS; and 0–0.44 ml with FL-2) and the concentrations of CO2, H2, H2S, and all six fecal SCFAs increased with age (p-trends < 0.05). Among them, CO2 was usually the predominant intestinal gas, and acetic acid was usually the predominant SCFA. When stratified by birth weight (<1,500 and ≥1,500 g), gender, and delivery mode, the concentration of CO2 was more pronounced among infants whose weight was ≥1,500 g than among those whose weight was <1,500 g (p-trends < 0.05).Conclusions: Our findings suggested that the intestinal gases and SCFAs produced by preterm infant gut microbiota in vitro increased with age during the first 4 weeks of life.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1939 ◽  
Author(s):  
Karolina Skonieczna-Żydecka ◽  
Elżbieta Grochans ◽  
Dominika Maciejewska ◽  
Małgorzata Szkup ◽  
Daria Schneider-Matyka ◽  
...  

Short chain fatty acids (SCFAs) being produced during fermentation of non-digestible polysaccharides are regulatory compounds with the potential to influence inflammatory, as well as emotional state and cognition through the gut–brain axis. We analyzed the association between stool concentration of SCFAs (acetic acid (C 2:0), propionic acid (C 3:0), isobutyric acid (C 4:0 i), butyric acid (C 4:0 n), isovaleric acid (C 5:0 i) valeric acid (C 5:0 n), isocaproic acid (C 6:0 i), caproic acid, and (C 6:0 n) heptanoic acid (C 7:0)) and depressive symptoms among women and looked for the potential confounders of microbiota byproduct synthesis. We enrolled 116 women aged 52.0 ± 4.7 years and recognized depression in 47 (40.52%). To analyze the emotional state, Beck’s Depression Inventory (BDI) was used. We assessed SCFAs content by means of gas chromatography. Fiber intake was estimated using parts of food frequency questionnaire. The content of acetic acid was significantly lowered compared to non-depressed women (median {IQR}: 29.49 {20.81} vs. 34.99 {19.55}, p = 0.04). A tendency toward decreased level of propionic acid was noticed (median {IQR}: 16.88 {9.73} vs. 21.64 {12.17}, p = 0.07), while the concentration of isocaproic acid was significantly increased in (median {IQR}: 0.89 {1.15} vs. 0.56 {0.95}, p < 0.01) comparison to matched healthy subjects. We found negative correlations between acetate, propionate, and Beck’s score (r = −0.2, p = 0.03; r = −0.21, p = 0.02, respectively). Statistically significant correlations between acetate and propionate and BDI somatic score (r = −0.21, p = 0.01; r = −0.17, p = 0.03), as well as correlations regarding isocaproic and both cognitive/affective (r = 0.37, p = 0.0001) and somatic (r = 9.37, p < 0.001) scores were found. Women who declared current usage of lipid-lowering and thyroid drugs in the past, had higher content of C6:0-i (Users; median {IQR}: 1.91 {3.62} vs. non-users; 0.55 {0.67}; p = 0.0048).and lower of C2:0 (Users; median {IQR}: 23.07 {12.80} vs. non users 33.73 {21.44}; p = 0.041), respectively. No correlations regarding SCFAs concentration and fiber intake were found. We concluded that SCFAs may potentially contribute to depression phenotype, however, due to the small size of groups suffering from moderately heavy (n = 5) and severe (n = 7) depression, the conclusion should be treated with caution. Pharmacotherapy of hyperlipidemia and thyroid disease might affect SCFAs synthesis. Studies with more participants are required.


Sign in / Sign up

Export Citation Format

Share Document