scholarly journals Defending against disparate marine turtle nest predators: nesting success benefits from eradicating invasive feral swine and caging nests from raccoons

Oryx ◽  
2014 ◽  
Vol 50 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Richard M. Engeman ◽  
David Addison ◽  
J.C. Griffin

AbstractNest predation can threaten marine turtle nesting success, and having to address dissimilar predator species complicates nest protection efforts. On Florida's Keewaydin Island predation by raccoons Procyon lotor and invasive feral swine Sus scrofa are disparate, significant threats to marine turtle nests. Using 6 years of nesting data (mostly for loggerhead marine turtles Caretta caretta) we examined the impacts of swine predation on nests and the benefits of swine eradication, caging nests to protect them from raccoon predation, and the effects of nest caging on swine predation. Nest predation by swine began in mid nesting season 2007, after which swine quickly annihilated all remaining marine turtle nests. During 2005–2010 raccoon predation rates for caged nests (0.7–20.4%) were significantly lower than for uncaged nests (5.6–68.8%) in every year except 2009, when little raccoon predation occurred. The proportions of eggs lost from raccoon-predated nests did not differ between caged and uncaged nests. Caging did not prevent destruction by swine but median survival time for caged nests was 11.5 days longer than for uncaged nests, indicating that caged eggs in nests have a greater chance of hatching before being predated by swine. The financial cost of the eradication of swine greatly outweighed the value of hatchlings lost to swine predation in 2007.

Oryx ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 229-235 ◽  
Author(s):  
Richard Engeman ◽  
R. Erik Martin ◽  
John Woolard ◽  
Margo Stahl ◽  
Charles Pelizza ◽  
...  

AbstractWe examined impacts from effective predator management on nesting success of marine turtles in an exceptional nesting year at Hobe Sound National Wildlife Refuge, Florida, USA, a beach with a high density of nesting marine turtles that has a history of severe nest predation. Historically up to 95% of nests were predated, primarily by raccoons Procyon lotor and, more recently, armadillos Dasypus novemcinctus. Predator control was identified as the most important conservation tool for marine turtle reproduction. Predator management by refuge staff as ancillary duties typically only held predation levels to c. 50%. However, when experts in predator control were employed predation was substantially reduced. An extraordinary opportunity to evaluate the biological and economic benefits of this management approach occurred in 2008, a year with exceptionally heavy nesting. Loggerhead turtle Caretta caretta nesting resurged, green Chelonia mydas and leatherback Dermochelys coriacea turtles nested in record numbers, producing twice or more than their median number of nests, and the first Kemp’s ridley Lepidochelys kempii nest was observed. Overall predation was 14.7%, resulting in an estimated > 128,000 additional hatchlings emerging compared to estimates had no predator management been in place and historical predation rates occurred, and > 56,000 hatchlings more than expected had predator management been conducted as ancillary duties rather than by experts. The USD 12,000 investment for expert predator management equated to only USD 0.09 spent for each additional hatchling produced compared to the scenario of no predator control and only USD 0.21 compared to the scenario of predator control as ancillary duties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam G. Clause ◽  
Aaron J. Celestian ◽  
Gregory B. Pauly

AbstractPlastic pollution, and especially plastic ingestion by animals, is a serious global issue. This problem is well documented in marine systems, but it is relatively understudied in freshwater systems. For turtles, it is unknown how plastic ingestion compares between marine and non-marine species. We review the relevant turtle dietary literature, and find that plastic ingestion is reported for all 7 marine turtle species, but only 5 of 352 non-marine turtle species. In the last 10 years, despite marine turtles representing just 2% of all turtle species, almost 50% of relevant turtle dietary studies involved only marine turtles. These results suggest that the potential threat of plastic ingestion is poorly studied in non-marine turtles. We also examine plastic ingestion frequency in a freshwater turtle population, finding that 7.7% of 65 turtles had ingested plastic. However, plastic-resembling organic material would have inflated our frequency results up to 40% higher were it not for verification using Raman spectroscopy. Additionally, we showcase how non-native turtles can be used as a proxy for understanding the potential for plastic ingestion by co-occurring native turtles of conservation concern. We conclude with recommendations for how scientists studying non-marine turtles can improve the implementation, quality, and discoverability of plastic ingestion research.


2004 ◽  
Vol 118 (1) ◽  
pp. 72 ◽  
Author(s):  
Donald F. McAlpine ◽  
Stan A. Orchard ◽  
Kelly A. Sendall ◽  
Rod Palm

Marine turtles in British Columbia have previously been considered off course stragglers. Here we document 20 new reports for Green Turtles, Chelonia mydas, and Leatherback Turtles, Dermochelys coriacea, for the province. Until recently there had been no concerted effort to acquire data on marine turtle abundance or frequency off British Columbia. Observations presented here allow a reassessment of marine turtle status in British Columbia waters. We suggest Green Turtles and Leatherbacks should be considered rare vagrants and uncommon seasonal residents, respectively, off British Columbia and that they are a natural part of the British Columbia marine environment.


2017 ◽  
Vol 28 (2) ◽  
pp. 293-301 ◽  
Author(s):  
VÁCLAV ZÁMEČNÍK ◽  
VOJTĚCH KUBELKA ◽  
MIROSLAV ŠÁLEK

SummaryOnly a few studies have assessed the predation risk on artificially marked nests, or have examined ways of marking nests to avoid destruction by machinery. Until now, however, neither type of study has directly addressed this apparent trade-off experimentally. The impact of marking the nests of Northern Lapwing Vanellus vanellus with thin 2 m-long conspicuous bamboo poles with the top end highlighted with reflective red or orange spray has been tested for three years in two breeding areas of waders in the Czech Republic. A total of 52 pairs of nests on agricultural land, with each pair consisting of one marked nest and one unmarked reference counterpart nest, were monitored for 2004 nest-days until hatching, agricultural operations or failure. The results proved that marking itself does not result in increased nest predation. The nests found in the early incubation stage were under higher threat of depredation, irrespective of the presence of marking. Our results show that it is possible to find a finely-tuned trade-off in nest marking of ground-nesting birds between risk of damage by agricultural machinery and risk of increased nest predation. Our positive experience with Northern Lapwing, and episodically with three other wader species in the Czech Republic, suggests that this direct nest protection could be used effectively for a wider variety of ground-nesting birds.


2017 ◽  
Vol 4 (8) ◽  
pp. 170153 ◽  
Author(s):  
Alexander R. Gaos ◽  
Rebecca L. Lewison ◽  
Michael P. Jensen ◽  
Michael J. Liles ◽  
Ana Henriquez ◽  
...  

The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles ( Eretmochelys imbricata ) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.


2015 ◽  
Author(s):  
Igor Danilov ◽  
Ekaterina Obraztsova ◽  
Vladimir Sukhanov

Background. This report reviews data on taxonomic diversity and paleobiogeography of Late Cretaceous (K2) non-marine turtles of Asia accumulated since latest reviews in 2000s. K2 non-marine turtles of Asia are known from four main geographical areas: Middle Asia-Kazakhstan (MAK), Mongolia (MO), China (CH) and Japan (JA). Methods. We critically reviewed composition of non-marine turtle assemblages of the K2 for each of the mentioned geographical area to make estimates of taxonomic diversity for different ages of the K2. Based on these data we analyzed temporal distribution of taxa of non-marine turtles and change in taxonomic diversity of turtle assemblages. Results. K2 turtles of MAK are represented by eight suprageneric taxa – Adocidae (Ad), Carettochelyidae (Ca), Lindholmemydidae (Li), Macrobaenidae (Ma), Nanhsiungchelyidae (Na), Trionychidae (Tr), Eucryptodira indet. (Eu), and Testudines indet. (Te), of which Ad, Li, Ma and Tr are known from the Cenomanian(CE) – early Campanian(CA), whereas other taxa only from the CE-early Turonian(TU). Taxonomic diversity changes from 10–12 species and genera, 6–8 suprageneric taxa in the CE to 7 species and genera, 4 families in the late TU early CA. K2 turtles of MO are represented by seven suprageneric taxa – Ad, Ca, Li, Ma, Meiolaniformes (Me), Na, and Tr, of which Li, Na and Tr are known from the CE-Maastrichtian(MA), Ad, Ca, and Ma, from the CE-Santonian(SA), and Me, only from the MA. Taxonomic diversity changes from 12 species, 10 genera, 6 families in the CE – SA, 8–9 species, 7–9 genera, 3 families in the CA, and 9 species, 7–8 genera, and 4 suprageneric taxa in the MA. K2 turtles of CH are represented by three suprageneric taxa (Li, Na, and Tr), but their precise temporal distribution is poorly known. Taxonomic diversity in the K2 is 12 species, 11–12 genera, and 3 families. K2 turtles of JA are represented by six suprageneric taxa (Ad, Ca, Na, Tr, Eu, and Te), of which Na are known from the CE-SA, Tr from the Coniacian(CO)-CA, and other taxa from the CO-SA. Taxonomic diversity changes from 1 species, genus, and family in the CE-TU to 7 species and genera, and 5–6 suprageneric taxa in the CO-SA. Discussion. In MAK, most significant transformation of turtle assemblages occurred in the CE-TU, whereas transformation in the SA-CA was less significant. On the contrary, in MO, most significant transformation occurred in the SA-CA, and less significant in the CA-MA.The patterns of transformation of the K2 turtle assemblages of CH and JA are not clear. The differences in the patterns of diversity and transformations of the K2 turtle assemblages in different geographical areas of Asia may be explained by different environmental conditions in these areas at that time and influence of such factors as transgressions in coastal areas (MAK and JA) and cooling and aridizations in inland areas (MO and CH).


2021 ◽  
Author(s):  
Anji D’souza ◽  
George Gale ◽  
Benjamin Michael Marshall ◽  
Daphawan Khamcha ◽  
Surachit Waengsothorn ◽  
...  

ABSTRACTPredator-prey interactions are fundamental drivers of population dynamics, yet rarely are both predator and prey species simultaneously studied. Despite being significant, widespread avian nest predators, research on the ecology of Southeast Asian snakes in relation to birds remains scarce. The green cat snake (Boiga cyanea) is a primary nest predator, responsible for ≈24% of forest songbird depredation in Northeast Thailand. We explored both diurnal and nocturnal movements of 14 (5 male, 9 female) adult B. cyanea with radio-telemetry for an average of 68 ± 16 days per individual, between 21 October 2017 and 8 June 2019 in the dry evergreen forest of the Sakaerat Biosphere Reserve (SBR). We quantified area of space use (ha) and activity through motion variance (Ϭm2) during the study period using dynamic Brownian bridge movement models, and linked our findings to a simultaneously-run avian nest monitoring study, initiated in 2013 within the same forest fragment. On average, movements, space use and activity differed between males and females, and between the avian nesting and non-nesting seasons. Males moved 51.37 m/day farther than females. They used areas 15.09 ha larger than females, and their activity was 3.91 Ϭm2 higher than that of females. In general, individuals moved 50.30 m/day farther during the nesting season than the non-nesting season. The snakes used areas 9.84 ha larger during the nesting season than the non-nesting season, and their activity during the nesting season was 3.24 Ϭm2 higher than that during the non-nesting season. All individuals were exclusively nocturnal, moving throughout the night, and often descending from higher diurnal refugia (>2 m) to forage closer to the ground after sunset. Boiga cyanea activity followed a similar trend to that of the recorded nest depredations at SBR. Our study links snake activity to nest depredations in SBR. Our openly-available data may yield further insight when combined with other major avian nest predator species like the congeneric invasive brown tree snake (Boiga irregularis) on the island of Guam.


Oryx ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 584-594 ◽  
Author(s):  
Kostas A. Katselidis ◽  
Gail Schofield ◽  
Giorgos Stamou ◽  
Panayotis Dimopoulos ◽  
John D. Pantis

AbstractThis study evaluates how key beach features influence suitability for nesting by Endangered loggerhead marine turtles Caretta caretta at an internationally important rookery on Zakynthos Island, Greece. During 2007–2009 we assimilated information on beach structure (elevation above sea level and width), the distribution of all nesting (turtle tracks that resulted in nests) and non-nesting (turtle tracks that did not result in nests) turtle emergences from the sea along 6 km of beach, nest placement parameters (distance from sea and elevation above sea level), and beach use by visitors. We found that turtles preferentially emerged on steeper sections of beach, with higher nesting densities occurring on the most environmentally stable beaches. Elevation was a more reliable indicator of nest placement (1 m above sea level) than distance to shore. However, because nests on steeper slopes are located closer to shore, the risk of damage by tourism is increased in such areas. We calculated a potential 36% overlap of natural nest locations with use of the beach by tourists; however, the recorded overlap was 7% because of existing management protocols. This overlap could be further reduced by focusing conservation effort (i.e. further restricting use by people) on beach sections with the steepest inclines. For example, slopes of > 22° comprise 1 km of total beach area annually, the closure of which (above the immediate shoreline to allow passage) would completely protect 50% of nests. This study shows the value of evidence-based management as a practical scientific tool to conserve threatened species in dynamic protected areas that are of both environmental and economic importance.


Oikos ◽  
2010 ◽  
Vol 119 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Karel Weidinger ◽  
Radim Kočvara

2020 ◽  
Vol 12 (9) ◽  
pp. 1492
Author(s):  
Sarah J. Biddiscombe ◽  
Elliott A. Smith ◽  
Lucy A. Hawkes

The Intergovernmental Panel on Climate Change predicts that sea levels will rise by up to 0.82 m in the next 100 years. In natural systems, coastlines would migrate landwards, but because most of the world’s human population occupies the coast, anthropogenic structures (such as sea walls or buildings) have been constructed to defend the shore and prevent loss of property. This can result in a net reduction in beach area, a phenomenon known as “coastal squeeze”, which will reduce beach availability for species such as marine turtles. As of yet, no global assessment of potential future coastal squeeze risk at marine turtle nesting beaches has been conducted. We used Google Earth satellite imagery to enumerate the proportion of beaches over the global nesting range of marine turtles that are backed by hard anthropogenic coastal development (HACD). Mediterranean and North American nesting beaches had the most HACD, while the Australian and African beaches had the least. Loggerhead and Kemp’s ridley turtle nesting beaches had the most HACD, and flatback and green turtles the least. Future management approaches should prioritise the conservation of beaches with low HACD to mitigate future coastal squeeze.


Sign in / Sign up

Export Citation Format

Share Document