Resource depletion in Aedes aegypti mosquitoes infected by the microsporidia Vavraia culicis

Parasitology ◽  
2007 ◽  
Vol 134 (10) ◽  
pp. 1355-1362 ◽  
Author(s):  
A. RIVERO ◽  
P. AGNEW ◽  
S. BEDHOMME ◽  
C. SIDOBRE ◽  
Y. MICHALAKIS

SUMMARYParasitic infection is often associated with changes in host life-history traits, such as host development. Many of these life-history changes are ultimately thought to be the result of a depletion or reallocation of the host's resources driven either by the host (to minimize the effects of infection) or by the parasite (to maximize its growth rate). In this paper we investigate the energetic budget of Aedes aegypti mosquito larvae infected by Vavraia culicis, a microsporidian parasite that transmits horizontally between larvae, and which has been previously shown to reduce the probability of pupation of its host. Our results show that infected larvae have significantly less lipids, sugars and glycogen than uninfected larvae. These differences in resources were not due to differences in larval energy intake (feeding rate) or expenditure (metabolic rate). We conclude that the lower energetic resources of infected mosquitoes are the result of the high metabolic demands that microsporidian parasites impose on their hosts. Given the fitness advantages for the parasite of maintaining the host in a larval stage, we discuss whether resource depletion may also be a parasite mechanism to prevent the pupation of the larvae and thus maximize its own transmission.

2020 ◽  
Vol 8 (11) ◽  
pp. 1781
Author(s):  
Samuel Slowinski ◽  
Isabella Ramirez ◽  
Vivek Narayan ◽  
Medha Somayaji ◽  
Maya Para ◽  
...  

Animals and plants host diverse communities of microorganisms, and these microbiotas have been shown to influence host life history traits. Much has been said about the benefits that host-associated microbiotas bestow on the host. However, life history traits often demonstrate tradeoffs among one another. Raising Caenorhabditis elegans nematodes in compost microcosms emulating their natural environment, we examined how complex microbiotas affect host life history traits. We show that soil microbes usually increase the host development rate but decrease host resistance to heat stress, suggesting that interactions with complex microbiotas may mediate a tradeoff between host development and stress resistance. What element in these interactions is responsible for these effects is yet unknown, but experiments with live versus dead bacteria suggest that such effects may depend on bacterially provided signals.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


2019 ◽  
Vol 286 (1904) ◽  
pp. 20190591 ◽  
Author(s):  
Alima Qureshi ◽  
Andrew Aldersley ◽  
Brian Hollis ◽  
Alongkot Ponlawat ◽  
Lauren J. Cator

Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae . aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.


2012 ◽  
Vol 58 (12) ◽  
pp. 1597-1608 ◽  
Author(s):  
Harish Padmanabha ◽  
Fabio Correa ◽  
Mathieu Legros ◽  
H. Fredrick Nijhout ◽  
Cynthia Lord ◽  
...  

2017 ◽  
Vol 220 ◽  
pp. 242-254 ◽  
Author(s):  
Sophie M. Prud'homme ◽  
Arnaud Chaumot ◽  
Eva Cassar ◽  
Jean-Philippe David ◽  
Stéphane Reynaud

Parasitology ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 205-216 ◽  
Author(s):  
D. J. Minchella

Over half of all living species of plants and animals are parasitic, which by definition involves intimate association with and unfavourable impact on hosts (Price, 1980). This paper will only consider parasites whose ‘unfavourable impact’ adversely affects the birth and/or mortality rates of their hosts (Anderson, 1978). Most organisms are potential hosts and must deal with the problem of parasitism. The probability of parasitic infection of a host is influenced by both environmental and genetic factors. Traditionally it was assumed that a host was either resistant or susceptible to a particular parasite and therefore the interaction between a parasite and potential host had only two possible outcomes: either the resistant host rebuffed the parasitic attack and remained uninfected or the parasite successfully invaded and significantly reduced the reproductive success of the susceptible host. This approach, however, ignored the intraspecific genetic variation present within both host and parasite populations (Wakelin, 1978). Since the outcome is determined by the interaction of a finite set of host genes and parasite genes, genetic variation in host susceptibility and parasite infectivity (Richards, 1976; Wakelin, 1978) suggests that more than two outcomes are possible. Variation in host and parasite genomes does not begin and end at the susceptibility/infectivity loci. Other genes may also influence the outcome of host–parasite interactions by altering the life-history patterns of hosts and parasites, and lead to a variety of outcomes.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009714
Author(s):  
Alexander E. Downie ◽  
Andreas Mayer ◽  
C. Jessica E. Metcalf ◽  
Andrea L. Graham

Hosts diverge widely in how, and how well, they defend themselves against infection and immunopathology. Why are hosts so heterogeneous? Both epidemiology and life history are commonly hypothesized to influence host immune strategy, but the relationship between immune strategy and each factor has commonly been investigated in isolation. Here, we show that interactions between life history and epidemiology are crucial for determining optimal immune specificity and sensitivity. We propose a demographically-structured population dynamics model, in which we explore sensitivity and specificity of immune responses when epidemiological risks vary with age. We find that variation in life history traits associated with both reproduction and longevity alters optimal immune strategies–but the magnitude and sometimes even direction of these effects depends on how epidemiological risks vary across life. An especially compelling example that explains previously-puzzling empirical observations is that depending on whether infection risk declines or rises at reproductive maturity, later reproductive maturity can select for either greater or lower immune specificity, potentially illustrating why studies of lifespan and immune variation across taxa have been inconclusive. Thus, the sign of selection on the life history-immune specificity relationship can be reversed in different epidemiological contexts. Drawing on published life history data from a variety of chordate taxa, we generate testable predictions for this facet of the optimal immune strategy. Our results shed light on the causes of the heterogeneity found in immune defenses both within and among species and the ultimate variability of the relationship between life history and immune specificity.


Sign in / Sign up

Export Citation Format

Share Document