Parasitology and immunology of mice vaccinated with irradiated Litomosoides sigmodontis larvae

Parasitology ◽  
2000 ◽  
Vol 120 (3) ◽  
pp. 271-280 ◽  
Author(s):  
L. LE GOFF ◽  
C. MARTIN ◽  
I. P. OSWALD ◽  
P. N. VUONG ◽  
G. PETIT ◽  
...  

This study was performed with Litomosoides sigmodontis, the only filarial species which can develop from the infective larvae to the patent phase in immunocompetent laboratory BALB/c mice. Parasitological features and immune responses were analysed up to 3 months before and after challenge inoculation, by comparing 4 groups of mice: vaccinated challenged, challenged only, vaccinated only, and naive mice. Male larvae were very susceptible to irradiation and only female irradiated larvae survived in vivo. Protection, assessed by a lower recovery rate, was confirmed and was established within the first 2 days of challenge. This early reduction of the recovery rate in vaccinated challenged mice was determined by their immune status prior to the challenge inoculation. This was characterized by high specific IgM and IgG subclass (IgG1, IgG2a and IgG3) levels, high specific IL-5 secretion from spleen cells in vitro and a high density of eosinophils in the subcutaneous connective tissue. Six h after the challenge inoculation, most tissue eosinophils were degranulated in vaccinated challenged mice. Thus, in the protocol of vaccination described, protection appeared mainly to result from the stimulation of a Th2 type response and eosinophils seemed to be the main effectors for the increased killing of infective larvae in vaccinated challenged mice. Two months after challenge inoculation, the percentage of microfilaraemic mice was lower in vaccinated challenged mice as a consequence of this overall reduction in the worm load. In both vaccinated challenged and challenged only groups, the in vitro splenocyte proliferative capacity was reduced in microfilaraemic mice.

1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


1975 ◽  
Vol 142 (6) ◽  
pp. 1391-1402 ◽  
Author(s):  
S S Rich ◽  
R R Rich

The mechanism of alloantigen-activated spleen cell suppression of mixed lymphocyte reaction (MLR) is explored in this report. Activated murine suppressor spleen cells elaborated a soluble noncytotoxic factor which suppressed MLR responses by 55-95%. Generation of suppressor factor required both in vivo alloantigen sensitization and specific in vitro restimulation. Suppressor factor was not produced by activated spleen cells which had been treated with anti-Thy-1.2 serum and complement. Antigenic specificity toward alloantigens of the stimulator cells was not demonstrable. In contrast, suppressor factor effectively inhibited MLR response only of responder cells of those strains that shared the D-end and the I-C subregion of the H-2 complex with the cells producing suppressor factor. Therefore, active suppression appears to require an MHC-directed homology relationship between regulating and responder cells in MLR.


1971 ◽  
Vol 133 (4) ◽  
pp. 846-856 ◽  
Author(s):  
Gordon N. Radcliffe ◽  
Michael A. Axelrad

The immune responses to sheep erythrocytes of mouse spleen cell suspensions from immune and nonimmune donors were compared in vitro. In vivo immunity was only transiently reflected in vitro, and 8 wk after in vivo immunization the responses of cultures from immunized and nonimmunized mice were virtually identical. There appeared to be two mechanisms for an antibody response to sheep erythrocytes. The first was responsible for the early primary response and is unmodified in the immune animal though contributing little to subsequent in vivo responses due to its suppressibility by specific antibody. The second was expressed in the in vivo secondary response but not on in vitro challenge of spleen cells from mice immunized many weeks previously; spleen cell cultures from such immune mice, freed from the antibody of the in vivo environment, once again demonstrate a pure primary-type response.


1974 ◽  
Vol 140 (1) ◽  
pp. 172-184 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Baruj Benacerraf

Although nonresponder, H-2s and H-2q, mice fail to develop GAT-specific PFC responses to GAT, they do develop GAT-specific PFC responses when stimulated by GAT complexed to an immunogenic carrier such as methylated bovine serum albumin. The studies described in this paper show that injection of nonresponder mice with GAT specifically decreases their ability to develop anti-GAT PFC responses to a subsequent challenge with GAT-MBSA. Addition of GAT to cultures of spleen cells from nonresponder mice also prevents development of the GAT-specific PFC responses stimulated by GAT-MBSA. Thus, interaction of nonresponder spleen cells with GAT leads to the induction of unresponsiveness in vivo and in vitro. Various parameters of the tolerance induction have been investigated and described. A comparison of the effects of GAT on B cells indicates that nonresponder B cells are more readily rendered unresponsive by soluble GAT than are responder B cells. The significance of these data for our understanding of Ir gene regulation of the immune response is discussed.


1973 ◽  
Vol 138 (5) ◽  
pp. 1107-1120 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Baruj Benacerraf

In vivo, the antibody response in mice to the random terpolymer L-glutamic acid50-L-alanine30-L-tyrosine10 (GAT) is controlled by a histocompatibility-linked immune response gene(s). We have studied antibody responses by spleen cells from responder and nonresponder mice to GAT and GAT complexed to methylated bovine serum albumin (GAT-MBSA) in vitro. Cells producing antibodies specific for GAT were enumerated in a modified Jerne plaque assay using GAT coupled to sheep erythrocytes as indicator cells. Soluble GAT stimulated development of IgG GAT-specific plaque-forming cell (PFC) responses in cultures of spleen cells from responder mice, C57Bl/6 (H-2b), F1 (C57 x SJL) (H-2b/s), and A/J (H-2a). Soluble GAT did not stimulate development of GAT-specific PFC responses in cultures of spleen cells from nonresponder mice, SJL (H-2s), B10.S (H-2s), and A.SW (H-2s). GAT-MBSA stimulated development of IgG GAT-specific PFC responses in cultures of spleen cells from both responder and nonresponder strains of mice. These data correlate precisely with data obtained by measuring the in vivo responses of responder and nonresponder strains of mice to GAT and GAT-MBSA by serological techniques. Therefore, this in vitro system can effectively be used as a model to study the cellular events regulated by histocompatibility-linked immune response genes.


1977 ◽  
Vol 146 (4) ◽  
pp. 1152-1157 ◽  
Author(s):  
D L Kastner ◽  
R R Rich ◽  
L Chu ◽  
S S Rich

A mixed leukocyte reaction suppressor factor is produced by spleen cells sensitized in vivo and restimulated in vitro across non-H-2 antigenic barriers. Cells capable of producing this factor appear in the spleens of minor locus-immunized animals later than in animals sensitized to major histocompatibility complex-encoded antigens. However, both H-2 and non H-2-induced factors suppress proliferative responses to any alloantigen. Splenocytes from animals immunized with H-2-identical, minor locus-disparate cells produce suppressor factor in vitro only when restimulated with cells sharing both H-2 and non-H-2 antigens with the in vivo stimulators.


1974 ◽  
Vol 139 (5) ◽  
pp. 1303-1316 ◽  
Author(s):  
John W. Schrader

Specific immunological unresponsiveness was induced using thymus-dependent antigens in congenitally athymic (nu/nu) mice, in which no T-cell function has been demonstrated. The tolerance was induced in vivo by the injection of 5–10 mg of either FGG or DNP-HGG. Spleen cells from treated mice were tested in vitro for the ability to mount thymus-independent immune responses against FGG in the presence of polymerized flagellin POL, and the DNP determinant conjugated to POL. A specific deficiency in either the in vitro anti-FGG or anti-DNP response was demonstrated, depending on the antigen used for treatment of the spleen cell donor. Athymic mice treated with FGG were also tested by in vivo challenge with FGG given with POL as an adjuvant and were found to be hyporesponsive. Unresponsiveness to in vitro challenge was established by 24 h after the in vivo injection of FGG. It was found that the injection of POL with the FGG prevented the development of unresponsiveness, but not if the POL was given 24 h or more after the FGG. The unresponsiveness could not be overcome by confrontation with allogeneic spleen cells from CBA mice, although the presence of allogeneic spleen cells had a large amplifying effect on the response of control spleen cells. These experiments demonstrate a mechanism for the tolerization of bone marrow-derived cells by thymus-dependent antigens in the absence of the thymus.


1994 ◽  
Vol 71 (04) ◽  
pp. 499-506 ◽  
Author(s):  
Mark W C Hatton ◽  
Bonnie Ross-Ouellet

SummaryThe behavior of 125I-labeled recombinant hirudin towards the uninjured and de-endothelialized rabbit aorta wall has been studied in vitro and in vivo to determine its usefulness as an indicator of thrombin activity associated with the aorta wall. Thrombin adsorbed to either sulfopropyl-Sephadex or heparin-Sepharose bound >95% of 125I-r-hirudin and the complex remained bound to the matrix. Binding of 125I-r-hirudin to the exposed aorta subendothelium (intima-media) in vitro was increased substantially if the tissue was pre-treated with thrombin; the quantity of l25I-r-hirudin bound to the de-endothelialized intima-media (i.e. balloon-injured in vitro) correlated positively with the quantity of bound 131I-thrombin (p <0.01). Aortas balloon-injured in vivo were measured for thrombin release from, and binding of 125I-r-hirudin to, the de-endothelialized intimal surface in vitro; 125I-r-hirudin binding correlated with the amount of active thrombin released (p <0.001). Uptake of 125I-r-hirudin by the aorta wall in vivo was proportional to the uptake of 131I-fibrinogen (as an indicator of thrombin activity) before and after balloon injury. After 30 min in the circulation, specific 125I-r-hirudin binding to the uninjured and de-endo- thelialized (at 1.5 h after injury) aorta wall was equivalent to 3.4 (± 2.5) and 25.6 (±18.1) fmol of thrombin/cm2 of intima-media, respectively. Possibly, only hirudin-accessible, glycosaminoglycan-bound thrombin is measured in this way.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ai-Ling Tian ◽  
Qi Wu ◽  
Peng Liu ◽  
Liwei Zhao ◽  
Isabelle Martins ◽  
...  

AbstractThe integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document