scholarly journals Triadic model of the neurobiology of motivated behavior in adolescence

2005 ◽  
Vol 36 (3) ◽  
pp. 299-312 ◽  
Author(s):  
MONIQUE ERNST ◽  
DANIEL S. PINE ◽  
MICHAEL HARDIN

Background. Risk-taking behavior is a major cause of morbidity and mortality in adolescence. In the context of decision theory and motivated (goal-directed) behavior, risk-taking reflects a pattern of decision-making that favors the selection of courses of action with uncertain and possibly harmful consequences. We present a triadic, neuroscience systems-based model of adolescent decision-making.Method. We review the functional role and neurodevelopmental findings of three key structures in the control of motivated behavior, i.e. amygdala, nucleus accumbens, and medial/ventral prefrontal cortex. We adopt a cognitive neuroscience approach to motivated behavior that uses a temporal fragmentation of a generic motivated action. Predictions about the relative contributions of the triadic nodes to the three stages of a motivated action during adolescence are proposed.Results. The propensity during adolescence for reward/novelty seeking in the face of uncertainty or potential harm might be explained by a strong reward system (nucleus accumbens), a weak harm-avoidant system (amygdala), and/or an inefficient supervisory system (medial/ventral prefrontal cortex). Perturbations in these systems may contribute to the expression of psychopathology, illustrated here with depression and anxiety.Conclusions. A triadic model, integrated in a temporally organized map of motivated behavior, can provide a helpful framework that suggests specific hypotheses of neural bases of typical and atypical adolescent behavior.

Author(s):  
Lee Peyton ◽  
Alfredo Oliveros ◽  
Doo-Sup Choi ◽  
Mi-Hyeon Jang

AbstractPsychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Briac Halbout ◽  
Andrew T Marshall ◽  
Ali Azimi ◽  
Mimi Liljeholm ◽  
Stephen V Mahler ◽  
...  

Efficient foraging requires an ability to coordinate discrete reward-seeking and reward-retrieval behaviors. We used pathway-specific chemogenetic inhibition to investigate how rats’ mesolimbic and mesocortical dopamine circuits contribute to the expression and modulation of reward seeking and retrieval. Inhibiting ventral tegmental area dopamine neurons disrupted the tendency for reward-paired cues to motivate reward seeking, but spared their ability to increase attempts to retrieve reward. Similar effects were produced by inhibiting dopamine inputs to nucleus accumbens, but not medial prefrontal cortex. Inhibiting dopamine neurons spared the suppressive effect of reward devaluation on reward seeking, an assay of goal-directed behavior. Attempts to retrieve reward persisted after devaluation, indicating they were habitually performed as part of a fixed action sequence. Our findings show that complete bouts of reward seeking and retrieval are behaviorally and neurally dissociable from bouts of reward seeking without retrieval. This dichotomy may prove useful for uncovering mechanisms of maladaptive behavior.


Neuroreport ◽  
2004 ◽  
Vol 15 (13) ◽  
pp. 2123-2127 ◽  
Author(s):  
Scott C. Matthews ◽  
Alan N. Simmons ◽  
Scott D. Lane ◽  
Martin P. Paulus

2017 ◽  
Author(s):  
Jeroen P.H. Verharen ◽  
Johannes W. de Jong ◽  
Theresia J.M. Roelofs ◽  
Christiaan F.M. Huffels ◽  
Ruud van Zessen ◽  
...  

AbstractHyperdopaminergic states in mental disorders are associated with disruptive deficits in decision-making. However, the precise contribution of topographically distinct mesencephalic dopamine pathways to decision-making processes remains elusive. Here we show, using a multidisciplinary approach, how hyperactivity of ascending projections from the ventral tegmental area (VTA) contributes to faulty decision-making in rats. Activation of the VTA-nucleus accumbens pathway leads to insensitivity to loss and punishment due to impaired processing of negative reward prediction errors. In contrast, activation of the VTA-prefrontal cortex pathway promotes risky decision-making without affecting the ability to choose the economically most beneficial option. Together, these findings show how malfunction of ascending VTA projections affects value-based decision-making, providing a mechanistic understanding of the reckless behaviors seen in substance abuse, mania, and after dopamine replacement therapy in Parkinson’s disease.


Author(s):  
Katherine N. Wright ◽  
Daniel W Wesson

The ventral striatum regulates motivated behaviors which are essential for survival. The ventral striatum contains both the nucleus accumbens (NAc), which is well established to contribute to motivated behavior, and the adjacent tubular striatum (TuS), which is poorly understood in this context. We reasoned that these ventral striatal subregions may be uniquely specialized in their neural representation of goal-directed behavior. To test this, we simultaneously examined TuS and NAc single-unit activity as male mice engaged in a sucrose self-administration task, which included extinction and cue-induced reinstatement sessions. While background levels of activity were comparable between regions, more TuS neurons were recruited upon reward-taking, and among recruited neurons, TuS neurons displayed greater changes in their firing during reward-taking and extinction than those in the NAc. Conversely, NAc neurons displayed greater changes in their firing during cue-reinstated reward-seeking. Interestingly, at least in the context of this behavioral paradigm, TuS neural activity predicted reward-seeking whereas NAc activity did not. Together, by directly comparing their dynamics in several behavioral contexts, this work reveals that the NAc and TuS ventral striatum subregions distinctly represent reward-taking and seeking.


2015 ◽  
Vol 114 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Max-Philipp Stenner ◽  
Vladimir Litvak ◽  
Robb B. Rutledge ◽  
Tino Zaehle ◽  
Friedhelm C. Schmitt ◽  
...  

The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181–190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection.


Sign in / Sign up

Export Citation Format

Share Document