Larger right inferior frontal gyrus volume and surface area in participants at genetic risk for bipolar disorders

2018 ◽  
Vol 49 (08) ◽  
pp. 1308-1315 ◽  
Author(s):  
V. Drobinin ◽  
C. Slaney ◽  
J. Garnham ◽  
L. Propper ◽  
R. Uher ◽  
...  

AbstractBackgroundLarger grey matter volume of the inferior frontal gyrus (IFG) is among the most replicated biomarkers of genetic risk for bipolar disorders (BD). However, the IFG is a heterogeneous prefrontal region, and volumetric findings can be attributable to changes in cortical thickness (CT), surface area (SA) or gyrification. Here, we investigated the morphometry of IFG in participants at genetic risk for BD.MethodsWe quantified the IFG cortical grey matter volume in 29 affected, 32 unaffected relatives of BD probands, and 42 controls. We then examined SA, CT, and cortical folding in subregions of the IFG.ResultsWe found volumetric group differences in the right IFG, with the largest volumes in unaffected high-risk and smallest in control participants (F2,192 = 3.07, p = 0.01). The volume alterations were localized to the pars triangularis of the IFG (F2,97 = 4.05, p = 0.02), with no differences in pars opercularis or pars orbitalis. Pars triangularis volume was highly correlated with its SA [Pearson r(101) = 0.88, p < 0.001], which significantly differed between the groups (F2,97 = 4.45, p = 0.01). As with volume, the mean SA of the pars triangularis was greater in unaffected (corrected p = 0.02) and affected relatives (corrected p = 0.05) compared with controls. We did not find group differences in pars triangularis CT or gyrification.ConclusionsThese findings strengthen prior knowledge about the volumetric findings in this region and provide a new insight into the localization and topology of IFG alterations. The unique nature of rIFG morphology in BD, with larger volume and SA early in the course of illness, could have practical implications for detection of participants at risk for BD.

2016 ◽  
Vol 46 (10) ◽  
pp. 2083-2096 ◽  
Author(s):  
G. Roberts ◽  
R. Lenroot ◽  
A. Frankland ◽  
P. K. Yeung ◽  
N. Gale ◽  
...  

BackgroundFronto-limbic structural brain abnormalities have been reported in patients with bipolar disorder (BD), but findings in individuals at increased genetic risk of developing BD have been inconsistent. We conducted a study in adolescents and young adults (12–30 years) comparing measures of fronto-limbic cortical and subcortical brain structure between individuals at increased familial risk of BD (at risk; AR), subjects with BD and controls (CON). We separately examined cortical volume, thickness and surface area as these have distinct neurodevelopmental origins and thus may reflect differential effects of genetic risk.MethodWe compared fronto-limbic measures of grey and white matter volume, cortical thickness and surface area in 72 unaffected-risk individuals with at least one first-degree relative with bipolar disorder (AR), 38 BD subjects and 72 participants with no family history of mental illness (CON).ResultsThe AR group had significantly reduced cortical thickness in the left pars orbitalis of the inferior frontal gyrus (IFG) compared with the CON group, and significantly increased left parahippocampal gyral volume compared with those with BD.ConclusionsThe finding of reduced cortical thickness of the left pars orbitalis in AR subjects is consistent with other evidence supporting the IFG as a key region associated with genetic liability for BD. The greater volume of the left parahippocampal gyrus in those at high risk is in line with some prior reports of regional increases in grey matter volume in at-risk subjects. Assessing multiple complementary morphometric measures may assist in the better understanding of abnormal developmental processes in BD.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaohui Yan ◽  
Ke Jiang ◽  
Hui Li ◽  
Ziyi Wang ◽  
Kyle Perkins ◽  
...  

Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.


2014 ◽  
Vol 153 ◽  
pp. S113
Author(s):  
Silvestro Trizio ◽  
Giulio Pergola ◽  
Annabella Di Giorgio ◽  
Enrico D'Ambrosio ◽  
Ileana Andriola ◽  
...  

2010 ◽  
Vol 196 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Michael P. Harms ◽  
Lei Wang ◽  
Carolina Campanella ◽  
Kristina Aldridge ◽  
Amanda J. Moffitt ◽  
...  

BackgroundThe relatives of individuals with schizophrenia exhibit deficits of overall frontal lobe volume, consistent with a genetic contribution to these deficits.AimsTo quantify the structure of gyral-defined subregions of prefrontal cortex in individuals with schizophrenia and their siblings.MethodGrey matter volume, cortical thickness, and surface area of the superior, middle and inferior frontal gyri were measured in participants with schizophrenia and their unaffected (non-psychotic) siblings (n = 26 pairs), and controls and their siblings (n = 40 pairs).ResultsGrey matter volume was reduced in the middle and inferior frontal gyri of individuals with schizophrenia, relative to controls. However, only inferior frontal gyrus volume was also reduced in the unaffected siblings of those with schizophrenia, yielding a volume intermediate between their affected siblings and controls.ConclusionsThe structure of subregions of the prefrontal cortex may be differentially influenced by genetic factors in schizophrenia, with inferior frontal gyrus volume being most related to familial risk.


2021 ◽  
Author(s):  
Xiaohui Yan ◽  
Ke Jiang ◽  
Hui Li ◽  
Ziyi Wang ◽  
Kyle Perkins ◽  
...  

Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where and why the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.


Author(s):  
William D. Hopkins ◽  
Cheryl D. Stimpson ◽  
Chet C. Sherwood

Bonobos and chimpanzees are two closely relates species of the genus Pan, yet they exhibit marked differences in anatomy, behaviour and cognition. For this reason, comparative studies on social behaviour, cognition and brain organization between these two species provide important insights into evolutionary models of human origins. This chapter summarizes studies on socio-communicative competencies and social cognition in chimpanzees and bonobos from the authors’ laboratory in comparison to previous reports. Additionally, recent data on species differences and similarities in brain organization in grey matter volume and distribution is presented. Some preliminary findings on microstructural brain organization such as neuropil space and cellular distribution in key neurotransmitters and neuropeptides involved in social behaviour and cognition is presented. Though these studies are in their infancy, the findings point to potentially important differences in brain organization that may underlie bonobo and chimpanzees’ differences in social behaviour, communication and cognition. Les bonobos et les chimpanzés sont deux espèces du genus Pan prochement liées, néanmoins ils montrent des différences anatomiques, comportementales et cognitives marquées. Pour cette raison, les études comparatives sur le comportement social, la cognition et l’organisation corticale entre ces deux espèces fournissent des idées sur les modèles évolutionnaires des origines humaines. Dans ce chapitre, nous résumons des études sur les compétences socio-communicatives et la cognition sociale chez les chimpanzés et les bonobos de notre laboratoire en comparaison avec des rapports précédents. En plus, nous présentons des données récentes sur les différences et similarités d’organisation corticale du volume et distribution de la matière grise entre espèces. Nous présentons plus de résultats préliminaires sur l’organisation corticale microstructurale comme l’espace neuropile et la division cellulaire dans des neurotransmetteurs clés et les neuropeptides impliqués dans le comportement social et la cognition. Bien que ces études sont dans leur enfance, les résultats montrent des différences d’organisation corticale importantes qui sont à la base des différences de comportement social, la communication et la cognition entre les bonobos et les chimpanzés.


2021 ◽  
pp. jnnp-2020-323541
Author(s):  
Jessica L Panman ◽  
Vikram Venkatraghavan ◽  
Emma L van der Ende ◽  
Rebecca M E Steketee ◽  
Lize C Jiskoot ◽  
...  

ObjectiveProgranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way.MethodsWe included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes.ResultsLanguage functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA.ConclusionDegeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.


2020 ◽  
Author(s):  
A. Buhrmann ◽  
A. M. A. Brands ◽  
J. van der Grond ◽  
C. Schilder ◽  
R. C. van der Mast ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document