scholarly journals Tree-Ring Records of Near-Younger Dryas Time in Central North America—Preliminary Results from the Lincoln Quarry Site, Central Illinois, Usa

Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 933-941 ◽  
Author(s):  
Irina P Panyushkina ◽  
Steven W Leavitt ◽  
Alex Wiedenhoeft ◽  
Sarah Noggle ◽  
Brandon Curry ◽  
...  

The abrupt millennial-scale changes associated with the Younger Dryas (YD) event (“chronozone”) near the dawn of the Holocene are at least hemispheric, if not global, in extent. Evidence for the YD cold excursion is abundant in Europe but fairly meager in central North America. We are engaged in an investigation of high-resolution environmental changes in mid-North America over several millennia (about 10,000 to 14,000 BP) during the Late Glacial–Early Holocene transition, including the YD interval. Several sites containing logs or stumps have been identified and we are in the process of initial sampling or re-sampling them for this project. Here, we report on a site in central Illinois containing a deposit of logs initially thought to be of YD age preserved in alluvial sands. The assemblage of wood represents hardwood (angiosperm) trees, and the ring-width characteristics are favorable to developing formal tree-ring chronologies. However, 4 new radiocarbon dates indicate deposition of wood may have taken place over at least 8000 14C yr (6000–14,000 BP). This complicates the effort to develop a single floating chronology of several hundred years at this site, but it may provide wood from a restricted region over a long period of time from which to develop a sequence of floating chronologies, the timing of deposition and preservation of which could be related to paleoclimatic events and conditions.

2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


The Holocene ◽  
2019 ◽  
Vol 29 (11) ◽  
pp. 1817-1830 ◽  
Author(s):  
R Wilson ◽  
K Anchukaitis ◽  
L Andreu-Hayles ◽  
E Cook ◽  
R D’Arrigo ◽  
...  

In north-western North America, the so-called divergence problem (DP) is expressed in tree ring width (RW) as an unstable temperature signal in recent decades. Maximum latewood density (MXD), from the same region, shows minimal evidence of DP. While MXD is a superior proxy for summer temperatures, there are very few long MXD records from North America. Latewood blue intensity (LWB) measures similar wood properties as MXD, expresses a similar climate response, is much cheaper to generate and thereby could provide the means to profoundly expand the extant network of temperature sensitive tree-ring (TR) chronologies in North America. In this study, LWB is measured from 17 white spruce sites ( Picea glauca) in south-western Yukon to test whether LWB is immune to the temporal calibration instabilities observed in RW. A number of detrending methodologies are examined. The strongest calibration results for both RW and LWB are consistently returned using age-dependent spline (ADS) detrending within the signal-free (SF) framework. RW data calibrate best with June–July maximum temperatures (Tmax), explaining up to 28% variance, but all models fail validation and residual analysis. In comparison, LWB calibrates strongly (explaining 43–51% of May–August Tmax) and validates well. The reconstruction extends to 1337 CE, but uncertainties increase substantially before the early 17th century because of low replication. RW-, MXD- and LWB-based summer temperature reconstructions from the Gulf of Alaska, the Wrangell Mountains and Northern Alaska display good agreement at multi-decadal and higher frequencies, but the Yukon LWB reconstruction appears potentially limited in its expression of centennial-scale variation. While LWB improves dendroclimatic calibration, future work must focus on suitably preserved sub-fossil material to increase replication prior to 1650 CE.


Author(s):  
Natalia Chumak

The environmental changes on short-period stages of the Late Glacial were reconstructed based on pollen data of peat-bog Pidluzhia deposits and their radiocarbon dating. There are the Older and Younger Dryas, the Allerod (three phases) are allocated on palynological data in the Late Glacial. Vegetation had evolved from cold meadows to pine forest during this time. The transition from the Late Glacial to the Holocene was identified by the emergence of broad-leaved trees (elm, oak and linden), the spreading of spruce and disappearance of xerophytic elements. Key words: paleovegetation, paleoclimate, palinology, the Late Glacial, the foothills of the Carpathian Mountains.


Radiocarbon ◽  
1985 ◽  
Vol 27 (1) ◽  
pp. 52-73 ◽  
Author(s):  
Mieczysław F Pazdur ◽  
Romuald Awsiuk ◽  
Andrzej Bluszcz ◽  
Tomasz Goslar ◽  
Anna Pazdur ◽  
...  

The following list contains all age measurements of paleoenvironmental samples made from 1978 to the end of 1982 for the IGCP 158 Project “Paleohydrological changes in the temperate zone in the last 15,000 years,” Subproject B “Lake and mire environments” (Berglund, 1979), initiated by Bjorn Berglund and Leszek Starkel in 1976. The aim of this project was to reconstruct environmental changes related to climate and human activity in the temperate zone of Asia, Europe, and North America. Broad environmental reconstructions will be based upon a network of reference sites representing the natural geographic regions, distinguished by their geology, climate, vegetation, and other natural factors, according to Berglund (1979). The subdivision of Poland into 29 paleoecological units according to Ralska-Jasiewiczowa (1982) is presented in table 1, and in figure 1 where reference sites dated by 14C in our lab are also indicated.


2013 ◽  
Vol 79 (2) ◽  
pp. 175-188 ◽  
Author(s):  
D. Shane Miller ◽  
Joseph A.M. Gingerich

AbstractIn this paper we use radiocarbon dates to evaluate the signature of the Younger Dryas Chronozone (YDC) in eastern North America. Using an approach that examines radiocarbon dates by region, we argue that the northeastern United States shows a better overall representation of radiocarbon dates when compared to the Mid-Atlantic and Southeast. These data result in a peak in summed probability distributions during the YDC, which is often interpreted as evidence of population growth. Further examination of these distributions, however, illustrates that differential standard deviations, varying sample size, and the effect of taphonomic and research biases likely overwhelm any demographic signatures in our study sample. Consequently, the frequency of radiocarbon dates by itself is insufficient for understanding the relationship between climate, culture and demography in eastern North America.


2020 ◽  
Author(s):  
Laia Andreu-Hayles ◽  
Rosanne D'Arrigo ◽  
Rose Oelkers ◽  
Kevin Anchukaitis ◽  
Greg Wiles ◽  
...  

<p>Tree ring-width (TRW) and Maximum Latewood Density (MXD) series have been largely used to develop high-resolution temperature reconstructions for the Northern Hemisphere. The divergence phenomenon, a weakening of the positive relationship between TRW and summer temperatures, has been observed particularly in northwestern North America chronologies. In contrast, MXD datasets have shown a more stable relationship with summer temperatures, but it is costly and labor-intensive to produce. Recently, methodological advances in image analyses have led to development of a less expensive and labor-intensive MXD proxy known as Blue Intensity (BI). Here, we compare 6 newly developed BI tree-ring chronologies of white spruce (<em>Picea glauca</em> [Moench] Voss) from high-latitude boreal forests in North America (Alaska in USA; Yukon and the Northwestern Territory in Canada), with MXD chronologies developed at the same sites. We assessed the quality of BI in relation to MXD based on mean correlation between trees, chronology reliability based on the Expressed Population Signal (EPS), spectral properties, and the strength and spatial extent of the temperature signal. Individual BI chronologies established significant correlations with summer temperatures showing a similar strength and spatial cover than MXD chronologies. Overall, the BI tree-ring data is emerging as a valuable proxy for generating high-resolution temperature spatial reconstructions over northwestern America.</p>


2012 ◽  
Vol 39 (1) ◽  
pp. 10-29 ◽  
Author(s):  
Radosław Dobrowolski ◽  
Irena Pidek ◽  
Witold Alexandrowicz ◽  
Stanisław Hałas ◽  
Anna Pazdur ◽  
...  

Abstract The paper presents the results of interdisciplinary (multiproxy) palaeoenvironmental studies of peat — calcareous tufa depositional sequences of spring mire from Radzików site (east Poland). Analyses of three biotic proxies (plant macrofossils, pollen, molluscs) were supplemented with sedimentological, geochemical, oxygen and carbon stable isotopes analyses and radiocarbon dating and used for reconstruction of environmental changes in Late Glacial and Holocene. The obtained results enable us to (1) reconstruct main phases of mire development and (2) determine environmental factors influencing changes of water supply. The object started to develop in Allerød. The Late Glacial and Early Holocene deposit sequence is relatively thick (about 1.0 m), with good palaeoecological record. The boundary between Younger Dryas and Preboreal is especially well confirmed by palynological and malacological analyses as well as radiocarbon dating. The Mesoholocene deposits are considerably worse preserved. Mire development was evaluated in terms of general mire ecology.


2015 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Danuta Dzieduszyńska ◽  
Jacek Forysiak

Abstract Late Glacial organic succession is recorded at the Żabieniec and Koźmin Las sites, in the Łódź region. A multiproxy approach provides a palaeogeographical assessment and yields a new insight into the old morainic area of the Polish Lowland. Additionally, the key profile Witów contributes in the reconstruction. It is demonstrated that the Late Glacial organic sediments of the Łódź region contain signs of environmental changes, starting from the first warming just after the Weichselian ice-sheet retreat from the Polish territory. Records at Żabieniec, apart from registering biotic and abiotic conditions which influenced functioning of a peatbog, provides information on the permafrost behaviour throughout the Late Glacial. At Koźmin Las, a unique discovery of the in situ riparian forest accompanied by organic sediments led to a high-resolution study of a series of events taking place on the floodplain during the Younger Dryas.


Radiocarbon ◽  
2014 ◽  
Vol 56 (2) ◽  
pp. 899-912 ◽  
Author(s):  
Philippe Crombé ◽  
Erick Robinson ◽  
Mark van Strydonck

Sum probability and Bayesian modeling of a substantial series of radiocarbon dates from a former extensive lake area in NW Belgium, known as the Moervaart area, allow important hydrological changes to be synchronized with Greenland Interstadial lb (or Intra-Allerød Cold Period). It is postulated that the disappearance of nearly all open water systems (Moervaart lake, anastomosing gullies, and dune-slacks) in response to this short but abrupt cooling event was responsible for a nearly total retreat of hunter-gatherers already some centuries before the start of Greenland Stadial 1 (Younger Dryas).


2004 ◽  
Vol 34 (10) ◽  
pp. 2027-2036 ◽  
Author(s):  
Igor Drobyshev ◽  
Mats Niklasson ◽  
Per Angelstam ◽  
Przemyslaw Majewski

In an attempt to quantitatively evaluate the natural versus anthropogenic signal in site fire histories, the statistical relationship between dendrochronologically dated fire events and tree-ring chronologies (deemed to be an independent proxy for climate variation) was analyzed for 14 sites in a 2600-km2 area of pine-dominated forests in the Komi Republic (East European Russia) over the period from 1424 to 1954. We developed a cumulative measure of statistical fit between two types of fire events (early- and late-season fires) and ring-width chronologies of Scots pine (Pinus sylvestris L.) (total ring- and latewood-width chronologies). For a given site, the statistical fit between fires and tree-ring data tended to decrease with an increasing proportion of unique fire years. Distance from a site to the nearest village (deemed to be a proxy of human impact) explained 50% of the variation in statistical fit between fires and tree-ring data. The fit decreased in the majority of the sites from the earlier (1424–1700) to the later (1700–1960) periods. We interpret this to be a result of increased human impact on the fire regime since 1700 due to intensified colonization of the area.


Sign in / Sign up

Export Citation Format

Share Document