scholarly journals A New 14C Data Set of the PY608W-PC Sediment Core from Lake Pumoyum Co (Southeastern Tibetan Plateau) Over the Last 19 kyr

Radiocarbon ◽  
2010 ◽  
Vol 52 (3) ◽  
pp. 1435-1442 ◽  
Author(s):  
Takahiro Watanabe ◽  
Tetsuya Matsunaka ◽  
Toshio Nakamura ◽  
Mitsugu Nishimura ◽  
Yasuhiro Izutsu ◽  
...  

A new continuous sediment core (PY608W-PC; 3.8 m length) for reconstruction of climatic and environmental changes in the southeastern Tibetan Plateau was taken from the eastern part of Lake Pumoyum Co in August 2006. Sediment layers of the lower part of PY608W-PC (380–300 cm depth) were composed mainly of relatively large plant residues (up to ∼3 cm in length) with an admixture of fine sand and sandy silt. The large plant residues disappeared at ∼300–290 cm depth in core PY608W-PC and were replaced by silt-silty clay. The large plant residues from the lower part of PY608W-PC could be aquatic, because the plant residues were extremely enriched in 13C (up to –3.0‰, −5.6 ± 2.3‰ on average). On the other hand, the plant residue concentrates (PRC fractions) from the upper part of the core (290–0 cm in depth) could be terrestrial C3 plants (δ13C = –21.8 ± 1.7‰ on average). Radiocarbon dating was performed on the large plant residues and PRC fractions from the PY608W-PC sediment core, which represented the chronology from ∼19,000 cal BP to present.

2008 ◽  
Vol 30 (4) ◽  
pp. 611-614 ◽  
Author(s):  
T. Watanabe ◽  
T. Nakamura ◽  
M. Nishimura ◽  
T. Matsunaka ◽  
M. Minami ◽  
...  

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Wei Wan ◽  
Di Long ◽  
Yang Hong ◽  
Yingzhao Ma ◽  
Yuan Yuan ◽  
...  

Abstract Long-term datasets of number and size of lakes over the Tibetan Plateau (TP) are among the most critical components for better understanding the interactions among the cryosphere, hydrosphere, and atmosphere at regional and global scales. Due to the harsh environment and the scarcity of data over the TP, data accumulation and sharing become more valuable for scientists worldwide to make new discoveries in this region. This paper, for the first time, presents a comprehensive and freely available data set of lakes’ status (name, location, shape, area, perimeter, etc.) over the TP region dating back to the 1960s, including three time series, i.e., the 1960s, 2005, and 2014, derived from ground survey (the 1960s) or high-spatial-resolution satellite images from the China-Brazil Earth Resources Satellite (CBERS) (2005) and China’s newly launched GaoFen-1 (GF-1, which means high-resolution images in Chinese) satellite (2014). The data set could provide scientists with useful information for revealing environmental changes and mechanisms over the TP region. Design Type(s) time series design • observation design • data integration objective Measurement Type(s) lake topography Technology Type(s) remote sensing Factor Type(s) Sample Characteristic(s) Tibetan Plateau • Qaidam Basin • Amu Darya • Brahmaputra River • River Ganges • Hexi District • Indus River • Mekong River • Salween River • Tarim Basin • Yangtze River • Yellow River • endorheic lake • exorheic lake Machine-accessible metadata file describing the reported data (ISA-Tab format)


Radiocarbon ◽  
2010 ◽  
Vol 52 (3) ◽  
pp. 1443-1448 ◽  
Author(s):  
Takahiro Watanabe ◽  
Tetsuya Matsunaka ◽  
Toshio Nakamura ◽  
Mitsugu Nishimura ◽  
Takahiro Sakai ◽  
...  

Soil samples from an 85-cm-long continuous section (PY608ES) were collected from an island in Lake Pumoyum Co (southeastern Tibetan Plateau, ∼5020 m asl) in August 2006. To estimate past environmental conditions of Lake Pumoyum Co during the Holocene, we analyzed radiocarbon ages, stable carbon isotope compositions, and total organic carbon/total nitrogen (TOC/TN) atomic ratios of the soil samples. The 14C measurements were performed with the Tandetron accelerator mass spectrometry system at the Center for Chronological Research, Nagoya University. The 14C concentration in the surface layer (101 pMC; 5–10 cm soil depth) was nearly modern. A 14C chronology of the sequence indicated that continuous soil development began on the island in Lake Pumoyum Co at ∼5800 cal BP (at 63 cm soil depth, the top of a gravel layer). These results may reflect a decrease in the lake level in the middle Holocene. The age of the obvious lithologic boundary (∼5800 cal BP) corresponds to the end of Holocene climate optimum.


2021 ◽  
Vol 811 ◽  
pp. 228871
Author(s):  
Chengyu Zhu ◽  
Guocan Wang ◽  
Philippe Hervé Leloup ◽  
Kai Cao ◽  
Gweltaz Mahéo ◽  
...  

2011 ◽  
Vol 52 (No. 3) ◽  
pp. 137-140 ◽  
Author(s):  
F. Nourbakhsh

Carbon and nitrogen transformations in soil are microbially mediated processes that are functionally related. The fate of C and N was monitored in a clay-textured soil (Typic Haplocambid) which was either unamended (control) or amended with various plant materials at the rate of 10 g residue C/kg soil. To evaluate C mineralization, soils were incubated for 46 days under aerobic conditions. Nitrogen mineralization/immobilization was evaluated at the end of eight-week incubation experiment. All CO<sub>2</sub> evolution data conformed well to a first-order kinetic model, C<sub>m&nbsp;</sub>= C<sub>0</sub> (1 &ndash; e<sup>&ndash;Kt</sup>). The product of K and C<sub>0 </sub>(KC<sub>0</sub>) was significantly correlated with some chemical and biochemical properties of the plant residues, including N concentration (r = 0.83, P &lt; 0.001), C:N (r = &ndash;0.64, P &lt; 0.05) and lignin:N (r = &ndash;0.81, P &lt; 0.001). Among the plant residue composition characteristics, N concentration (r = 0.96, P &lt; 0.001), C:N (r = &ndash;0.69, P &lt; 0.01) and lignin:N (r = &ndash;0.68, P &lt; 0.01) were significantly correlated with the net rates of N mineralization/immobilization (N<sub>m/i</sub>).


2010 ◽  
Vol 76 (7) ◽  
pp. 2155-2164 ◽  
Author(s):  
Sherri L. Henderson ◽  
Catherine E. Dandie ◽  
Cheryl L. Patten ◽  
Bernie J. Zebarth ◽  
David L. Burton ◽  
...  

ABSTRACT In agricultural cropping systems, crop residues are sources of organic carbon (C), an important factor influencing denitrification. The effects of red clover, soybean, and barley plant residues and of glucose on denitrifier abundance, denitrification gene mRNA levels, nitrous oxide (N2O) emissions, and denitrification rates were quantified in anoxic soil microcosms for 72 h. nosZ gene abundances and mRNA levels significantly increased in response to all organic carbon treatments over time. In contrast, the abundance and mRNA levels of Pseudomonas mandelii and closely related species (nirS P) increased only in glucose-amended soil: the nirS P guild abundance increased 5-fold over the 72-h incubation period (P < 0.001), while the mRNA level significantly increased more than 15-fold at 12 h (P < 0.001) and then subsequently decreased. The nosZ gene abundance was greater in plant residue-amended soil than in glucose-amended soil. Although plant residue carbon-to-nitrogen (C:N) ratios varied from 15:1 to 30:1, nosZ gene and mRNA levels were not significantly different among plant residue treatments, with an average of 3.5 � 107 gene copies and 6.9 � 107 transcripts g−1 dry soil. Cumulative N2O emissions and denitrification rates increased over 72 h in both glucose- and plant-tissue-C-treated soil. The nirS P and nosZ communities responded differently to glucose and plant residue amendments. However, the targeted denitrifier communities responded similarly to the different plant residues under the conditions tested despite changes in the quality of organic C and different C:N ratios.


Sign in / Sign up

Export Citation Format

Share Document