Quantification of Sedimentary Organic Carbon Storage and Turnover of Tidal Mangrove Stands in Southern China Based on Carbon Isotopic Measurements

Radiocarbon ◽  
2013 ◽  
Vol 55 (3) ◽  
pp. 1665-1674 ◽  
Author(s):  
J P Zhang ◽  
W X Yi ◽  
C D Shen ◽  
P Ding ◽  
X F Ding ◽  
...  

Mangrove ecosystems are highly productive and play an important role in tropical and global coastal carbon (C) budgets. However, sedimentary organic carbon (SOC) storage and turnover in mangrove forests are still poorly understood. Based on C isotopic measurements of sediment cores of 2 mangrove stands in southern China, SOC density was 431.77 Mg ha−1 at site 1 (a Aegiceras corniculatum-dominated high tidal stand) and 243.65 Mg ha−1 in site 2 (a Bruguiera gymnorrhiza + Kandelia candel-dominated middle tidal stand). SOC δ13C values at both mangrove sites ranged from -29.4% to −26.0%. SOC δ13C was enriched with depth at 20–50 cm at site 1, which possibly resulted from preferential microbial decomposition. SOC δ13C at site 2 experienced frequent tidal flushing, and presented relatively stable values with depth. A bomb-14C-based SOC turnover model indicated that turnover times of SOC at 20–50 cm at site 1 were 4.44–26.04 yr. Modern C input from abundant roots might account for the very short SOC turnover times at these subsurface layers. As a result, our study suggested that tidal processes had a great influence on SOC storage and turnover in mangrove forests.

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Jianxiong Hu ◽  
Pei Sun Loh ◽  
Siriporn Pradit ◽  
Thi Phuong Quynh Le ◽  
Chantha Oeurng ◽  
...  

Mangroves are highly productive blue carbon ecosystems that preserve high organic carbon concentrations in soils. In this study, particle size, bulk elemental composition and stable carbon isotope were determined for the sediment cores collected from the landward and seaward sides of two mangrove forests of different ages (M1, ca. 60; M2, ca. 4 years old) to determine the effects of geomorphic setting and age (L1 = old mangrove and S1 = salt marsh stand in M1; L2 = young mangrove and S2 = bare mudflat in M2) on sediments and organic carbon accumulation. The objective of this study was to determine the feasibility of the northernmost human-planted mangroves in China to accumulate sediment and carbon. Our results showed that fine-grained materials were preserved well in the interior part of the mangroves, and the capacity to capture fine-grained materials increased as the forest aged. The biogeochemical properties (C/N: 5.9 to 10.8; δ13C: −21.60‰ to −26.07‰) indicated that the local organic carbon pool was composed of a mixture of autochthonous and allochthonous sources. Moreover, the accumulation of organic carbon increased with the forest age. The interior part of the old mangrove had the highest organic carbon stock (81.93 Mg Corg ha−1). These findings revealed that mangrove reforestation had positive effects on sediments and organic carbon accretion.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105270
Author(s):  
Gang Wang ◽  
Minerva Singh ◽  
Jiaqiu Wang ◽  
Ling Xiao ◽  
Dongsheng Guan

2015 ◽  
Vol 100 (1) ◽  
pp. 476-482 ◽  
Author(s):  
Aurora M. Ricart ◽  
Paul H. York ◽  
Michael A. Rasheed ◽  
Marta Pérez ◽  
Javier Romero ◽  
...  

1998 ◽  
Vol 27 ◽  
pp. 275-280 ◽  
Author(s):  
Akira Nishimura ◽  
Toru Nakasone ◽  
Chikara Hiramatsu ◽  
Manabu Tanahashi

Based on sedimenlological and micropaleontological work on three sediment cores collected at about 167° Ε in the western Ross Sea, Antarctica, and accelerator mass spectrometer l4C ages of organic carbon, we have reconstructed environmental changes in the area during the late Quaternary. Since 38 ka BP at latest, this area was a marine environment with low productivity. A grounded ice sheet advanced and loaded the sediments before about 30-25 ka BP. After 25 ka BP, the southernmost site (76°46'S) was covered by floating ice (shelf ice), preventing deposition of coarse terrigenous materials and maintaining a supply of diatom tests and organic carbon until 20 ka BP. The northernmost site (74°33'S) was in a marine environment with a moderate productivity influenced by shelf ice/ice sheet after about 20 ka BP. Since about 10 ka BP, a sedimentary environment similar to the present-day one has prevailed over this area.


2019 ◽  
Vol 124 (9) ◽  
pp. 2804-2822
Author(s):  
Jae Seong Lee ◽  
Jeong Hee Han ◽  
Sung‐Uk An ◽  
Sung‐Han Kim ◽  
Dhongil Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document