Control of Weeds in an Oat (Avena sativa)—Soybean (Glycine max) Ecofarming Rotation

Weed Science ◽  
1980 ◽  
Vol 28 (1) ◽  
pp. 46-50 ◽  
Author(s):  
O. C. Burnside ◽  
G. A. Wicks ◽  
D. R. Carlson

Soybeans [Glycine max(L.) Merr.] and oats (Avena sativaL.) were grown in a rotation using reduced or no-tillage crop production systems at Lincoln, Nebraska, over a 4-yr period. Oat stubble was treated after harvest with 3.4 kg/ha of metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] to reduce the growth of late summer weeds. The following spring soybeans were planted directly into the undisturbed stubble or into a seedbed prepared by tandem discing. Three seedbed preparations, two soybean cultivars, and six preemergence weed control treatments were compared. Glyphosate [N-(phosphonomethyl)glycine] applied at 0.8 kg/ha or tandem discing were equally effective in producing a weed-free seedbed. Herbicides applied preemergence on soybeans were still necessary for the reduced tillage or no-tillage production systems if weeds were to be adequately controlled in soybeans without cultivation. Differences in seed-yield occurred between cultivars only when late summer rains benefited the later maturing ‘Williams' soybeans over earlier maturing ‘Wells'. With adequate weed control, soybeans and oats can be grown in a no-tillage, crop rotation, production system in eastern Nebraska to produce high yields with a minimum of labor and soil exposure.

1990 ◽  
Vol 4 (3) ◽  
pp. 631-634 ◽  
Author(s):  
R. E. Blackshaw

Field studies were conducted in 1987, 1988, and 1989 at Lethbridge, Alberta to determine suitable herbicides for the control of Russian thistle and kochia in field corn grown in a dryland cropping system. Soil-applied atrazine or cyanazine provided inconsistent control of these weeds under dryland conditions. Combining inter-row tillage or 2,4-D applied postemergence with soil-applied atrazine improved the consistency of weed control over years. Postemergence atrazine and dicamba plus 2,4-D controlled Russian thistle and kochia in all years. Corn yields reflected the level of weed control attained with each treatment. The suitability of the various treatments for weed control in corn grown under dryland crop production systems is discussed.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 233-238 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt

Field experiments were conducted to evaluate the interactions of tillage systems with imazaquin and imazethapyr on weed control and soybean injury and yield. Control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail from imazaquin and imazethapyr in conventional tillage was generally equal to or greater than control in no-tillage. However, under limited rainfall, weed control in no-tillage was generally equal to or greater than control in conventional tillage. Reductions in soybean heights due to herbicide treatment were evident in both tillage systems in 1985 and 1986 but not in. Soybean yields were reduced in 1985 from imazaquin at 140, 210, and 250 g/ha and imazethapyr at 105 and 140 g/ha. Yields were not reduced in 1986 and. Imazaquin and imazethapyr appear to provide adequate control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail in conventional and no-till systems.


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 47
Author(s):  
Huan Zhang ◽  
Markus Flury ◽  
Carol Miles ◽  
Hang Liu ◽  
Lisa DeVetter

Soil-biodegradable plastic mulches (BDMs) are made from biodegradable materials that can be bio-based, synthetic, or a blend of these two types of polymers, which are designed to degrade in soil through microbial activities. The purpose of BDMs is to reduce agricultural plastic waste by replacing polyethylene (PE) mulch, which is not biodegradable. Most studies have evaluated the breakdown of BDMs within annual production systems, but knowledge of BDM breakdown in perennial systems is limited. The objective of this study was to evaluate the deterioration and degradation of BDMs in a commercial red raspberry (Rubus ideaus L.) production system. Deterioration was low (≤11% percent soil exposure; PSE) for all mulches until October 2017 (five months after transplanting, MAT). By March 2018 (10 MAT), deterioration reached 91% for BDMs but remained low for PE mulch (4%). Mechanical strength also was lower for BDMs than PE mulch. In a soil burial test in the raspberry field, 91% of the BDM area remained after 18 months. In-soil BDM degradation was minimal, although the PSE was high. Since mulch is only applied once in a perennial crop production system, and the lifespan of the planting may be three or more years, it is worth exploring the long-term degradation of BDMs in perennial cropping systems across diverse environments.


1990 ◽  
Vol 4 (3) ◽  
pp. 509-513 ◽  
Author(s):  
Russell W. Wallace ◽  
Robin R. Bellinder

Linuron, metribuzin, oryzalin, and metolachlor were applied at recommended (1X) and two-thirds (0.67X) rates to evaluate control of redroot pigweed and common lambsquarters in conventional and rye-stubble reduced-tillage potato production systems. Regardless of tillage, common lambsquarters control was satisfactory during both seasons at both rates of linuron, metribuzin, and oryzalin. Redroot pigweed control by these three herbicides, although excellent in 1988, was poor in RT plots during 1987. Yields did not differ between tillage systems. Reduced weed control with metolachlor during both seasons, and possible crop injury with linuron in 1987 resulted in significant yield reductions.


1991 ◽  
Vol 5 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Charles T. Bryson ◽  
Edward M. Croom

Annual wormwood has been cultivated on a small scale for production of the artemisinin class of antimalarial drugs in sufficient quantities for preclinical and clinical trials. Large scale cultivation will require a reliable, efficient crop production system. Production systems using 32 herbicides alone or in combinations were evaluated in growth chamber, greenhouse, and field experiments at Stoneville, MS from 1985 through 1988. The herbicide treatments that provided the best weed control were (A) metolachlor at 2.2 kg ai ha-1preemergence (PRE), (B) chloramben at 2.2 kg ai ha-1(PRE), or (C) trifluralin at 0.6 kg ai ha-1preplant soil incorporated (PPI) followed by fluazifop at 0.2 + 0.2 kg ai ha-1postemergence broadcast (POST) and acifluorfen at 0.6 kg ai ha-1(POST). These herbicide production systems provided excellent weed control (≥85%) and minimal crop injury (≤10%) with no effect on crop height or weight at harvest. Production of artemisinin was not reduced by herbicide treatments A, B, and C in 1987 and treatments B and C in 1988 when compared with the hand-weeded plots.


Weed management is a new term for the age-old practice of employing all available means, in a planned way, to keep weed populations under control. It seeks to distinguish the systematic approach to weed control, based on scientific knowledge and rational strategies, from the pragmatic destruction of weeds. The remarkable efficiency of herbicides has in recent years emphasized the latter and allowed revolutionary methods of crop production to be practised. These have, however, led to serious new weed problems which in turn require more intensive herbicide use. The need for a weed management approach is increasingly recognized. New opportunities for this are provided by the availability of numerous herbicides and plant growth regulators and a growing understanding of the biology, ecology and population dynamics of weeds in relation to crop production systems. Examples discussed include: systematic control of grass weeds in intensive cereals in Britain, weed control in rice and in soybeans, the control of aquatic weeds by biological and chemical methods and an experimental zero-tillage cropping system for the humid tropics based on herbicides, growth regulators and ground-cover leguminous crops. In such management systems, interference of weed behaviour by exogenous growth regulators is likely to be of increasing significance. Constraints on the adoption of weed management practices include lack of support for weed science as a discipline, limited appeal to the agrochemical industry and inadequate extension services in many countries.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 746D-747
Author(s):  
S. Alan Walters* ◽  
Scott A. Nolte ◽  
Joseph L. Matthews ◽  
Bryan G. Young

A field study was conducted in 2002 and 2003 to evaluate various herbicides (ethafluralin & clomazone, halosulfuron, and ethafluralin & clomazone + halosulfuron) with or without a winter rye (Secale cereale L.) cover crop in no-tillage `Daytona' cucumber (Cucumis sativus L.) production. All herbicides were applied preplant prior to cucumber transplanting, and no injury or stunting to cucumber was observed with any of the treatments evaluated at any time during the two growing seasons. Winter rye provided a significant advantage for weed control compared to the no cover crop production system. The combination of ethafluralin & clomazone + halosulfuron provided the greatest control of smooth crabgrass [Digitaria ischaemum (Schreb. Ex Schweig) Schreb. Ex Muhl.] and redroot pigweed (Amaranthus retroflexus L.). Ethafluralin & clomazone provided little redroot pig-weed control, while halosulfuron alone provided no control of smooth crabgrass. Winter rye enhanced cucumber yields in 2002 (drought conditions), while in 2003 (sufficient moisture and cooler soil temperatures), winter rye tended to suppress yields. During drought conditions (2002), treatments with ethafluralin & clomazone and ethafluralin & clomazone + halosulfuron produced similar yields. However, in 2003, treatments with ethafluralin & clomazone + halosulfuron produced greater yields than treatments with ethafluralin & clomazone. Overall, the handweed treatment provided the greatest yields, while the non-treated and halosulfuron only treatment provided the lowest yields. Winter rye will provide some additional weed control in a no-tillage vegetable production system, but may also provide negative effects by suppressing crop yield depending on seasonal growing conditions.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 239-249 ◽  
Author(s):  
Michael D. Johnson ◽  
Donald L. Wyse ◽  
William E. Lueschen

The objectives of this research were to compare the weed control efficacy of liquid, granular, and microencapsulated formulations of preemergence herbicides in moldboard plow, chisel plow, ridge tillage, and no-tillage corn and soybean production systems, and to determine whether herbicide formulation can influence herbicide interception and retention on surface corn residue. Common lambsquarters populations were threefold higher in corn than in soybeans. A mixed population of giant foxtail and green foxtail was highest in the chisel plow and lowest in the ridge tillage system as were total weed numbers. Percent weed control was not influenced by tillage when considered across all herbicide treatments. Weed control was not influenced by herbicide formulation in the moldboard plow, chisel plow, or ridge tillage systems, but granular herbicide applications provided better weed control than liquid applications in the no-tillage system and across various rates of corn residue in an experiment with no tillage variables. Two- to threefold less granular-applied herbicide was intercepted by surface corn residue at the time of application compared to liquid-applied herbicide. Increasing amounts of postapplication rainfall decreased the difference among formulations with regard to both total soil reception of the herbicide and resultant weed control. There was no consistent advantage for the microencapsulated formulation over the other herbicide formulations. Surface corn residue controlled many weeds without the aid of a herbicide and actually contributed to overall weed control even where herbicides were applied. This suggests that the binding of preemergence herbicides on surface crop residue may not be the cause of weed control failures in reduced-tillage systems as is often assumed to be the case.


Sign in / Sign up

Export Citation Format

Share Document