Atrazine and Suspension Fertilizer Compatibility

Weed Science ◽  
1973 ◽  
Vol 21 (3) ◽  
pp. 217-220 ◽  
Author(s):  
Louis J. Meyer ◽  
Larry S. Murphy ◽  
Oliver G. Russ

Four field studies and two growth-chamber studies were used to evaluate the compatibility of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) in suspension fertilizer on corn (Zea maysL. ‘Pioneer 321’). Crop yields and tissue analyses were used to determine effects of atrazine on fertilizer availability. Visual and pictorial comparisons determined effects of fertilizer on atrazine phytotoxicity. Fertilizer-herbicide combinations compounded 230 days or sooner before application produced no change in atrazine phytotoxicity or fertilizer availability in growth chamber studies. Preplant-incorporated treatments displayed better fertilizer availability than preemergence treatments in the field. Preemergence treatments resulted in greater atrazine phytotoxicity under drought conditions. No problems of physical compatibility were encountered with the mixtures.

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33741 ◽  
Author(s):  
Paul Szpak ◽  
Fred J. Longstaffe ◽  
Jean-François Millaire ◽  
Christine D. White

Weed Science ◽  
1981 ◽  
Vol 29 (1) ◽  
pp. 83-86 ◽  
Author(s):  
R. K. Mann ◽  
C. E. Rieck ◽  
W. W. Witt

Mechanical scarification of burcucumber (Sicyos angulatusL.) seeds resulted in increased water absorption and germination. Burcucumber germination occurred at temperatures ranging from 15 to 35 C with optimum germination occurring from 20 to 30 C. Scarified burcucumber seeds were more sensitive to simulated moisture stress than were either soybean [Glycine max(L.) Merr. ‘Williams’] or corn [Zea maysL. ‘Pioneer Brand 3369A’]. Regardless of osmotic potential, intact burcucumber seeds did not germinate; scarified seeds germinated at osmotic potentials to −6 bars. Cold stratification at 4 C for 18 weeks modified seedcoat permeability so that 11% of non-scarified burcucumber seeds germinated. Increasing depth of planting decreased emergence with limited emergence occurring at depths of 15 and 16 cm in field and growth chamber studies, respectively.


2012 ◽  
Vol 26 (1) ◽  
pp. 122-129 ◽  
Author(s):  
Charles T. Bryson ◽  
Richard Carter

Greenhouse, growth chamber, and field studies were conducted at Stoneville, MS, in 2000 to 2008, to determine the growth rate, reproductive and overwintering potential, and control of deeproot sedge. In growth chamber studies, deeproot sedge growth rate (ht) and plant dry wt were greatest at 25/35 C (night/day temperatures), when compared with regimes of 5/15, 15/25, and 20/30 C. Based on the average number of scales (fruiting sites per spikelet), spikelets per inflorescence, and culms per plant, deeproot sedge reproductive potential was 2.6-, 6.2-, and 17.4-fold greater than Surinam, green, and knob sedges, respectively. A single deeproot sedge plant produced an average of 85,500 achenes annually. Mowing at 15-cm ht weekly prevented achene production but did not kill deeproot sedge plants. The average number of inflorescences produced on mowed plants was 1.2 to 4 times greater in 2- and 1-yr-old deeproot sedge plants, respectively, when compared with unmowed plants. Mature deeproot sedge achenes were produced between monthly mowings. In a 3-yr field study, glyphosate, glufosinate, hexazinone, and MSMA provided more than 85% control of deeproot sedge, and above the soil, live deeproot sedge plant dry wt was reduced by 50, 64, 68, 72, 86, and 93% by dicamba, halosulfuron-methyl, MSMA, hexazinone, glufosinate, and glyphosate, respectively. All (100%) deeproot sedge plants 1 yr old or older overwintered at Stoneville, MS, at 33°N latitude.


1989 ◽  
Vol 69 (3) ◽  
pp. 643-651
Author(s):  
R. T. WEILAND ◽  
A. M. McCLUNG

A comparison of biomass and nitrogen (N) parameters from 23 maize (Zea mays L.) inbreds was conducted between hydroponic culturing during two growth chamber studies and soil in the field for two harvests during 1984. The growth chamber studies and first field harvests were sampled at a similar growth stage (approximately nine-leaf); the second field harvest was at anthesis. Shoot dry matter accumulation was greater under hydroponic than under field conditions at a similar vegetative growth stage. Significant inbred differences for shoot biomass, reduced and total N contents and reduced and total N concentrations were determined for the growth chamber and both field harvests. Correlation coefficients were low and not significant (P < 0.05) between inbred parameters in the growth chamber and in the field. In summary, traits from hydroponic plants were not predictive of those from field plants. However, N parameters and biomass of inbreds harvested in the field at a mid-vegetative stage were predictive of inbred performance at anthesis.Key words: Zea mays L., maize, biomass, nitrogen, field, hydroponic


HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 170-173 ◽  
Author(s):  
M.D. Richardson

Bermudagrass (Cynodon spp.) turf is often overseeded with a cool-season species such as perennial ryegrass (Lolium perenne L.) to provide an improved winter surface for activities such as golf or athletic events. Perennial ryegrass can become a persistent weed in overseeded turf due to the heat and disease tolerance of improved cultivars. Intermediate ryegrass is a relatively new turfgrass that is a hybrid between perennial and annual ryegrass (L. multiflorum Lam.). Very little information is available on intermediate ryegrass as an overseeding turf. Greenhouse, field, and growth chamber studies were designed to compare two cultivars of intermediate ryegrass (`Transist' and `Froghair') with three cultivars of perennial ryegrass (`Jiffie', `Racer', and `Calypso II') and two cultivars of annual ryegrass (`Gulf' and `TAM-90'). In a greenhouse study, the perennial ryegrass cultivars had finer leaf texture (2.9-3.2 mm), shorter collar height (24.7-57.0 mm), and lower weight/tiller (29-39 mg) than the intermediate and annual cultivars. In the field studies, the intermediate cultivar Transist exhibited improved turfgrass quality (6.1-7.1) over the annual cultivars (4.5-5.8) and the other intermediate cultivar Froghair (5.4-5.7). However, neither of the intermediate cultivars had quality equal to the perennial ryegrass cultivars (7.0-7.9). The perennial ryegrass cultivars exhibited slow transition back to the bermudagrass compared to the annual and intermediate ryegrass cultivars. In the growth chamber study, the annual and intermediate cultivars all showed increased high-temperature stress under increasing temperatures compared to the perennial cultivars, which did not show stress until air temperature exceeded 40 °C. Collectively, these studies indicate that the intermediate ryegrass cultivar Transist may have promise as an overseeding turfgrass due to its improved quality compared to annual types and a lack of heat tolerance relative to perennial cultivars, but with transition qualities similar to perennial ryegrass.


Weed Science ◽  
1974 ◽  
Vol 22 (1) ◽  
pp. 83-85 ◽  
Author(s):  
T. H. Wright ◽  
C. E. Rieck

Injury to corn (Zea maysL.) hybrids from butylate (S-ethyl diisobutylthiocarbamate) was investigated as a function of planting depth, soil pH, and temperature. Field and growth chamber studies indicated that the potential for butylate injury increased with increasing planting depth regardless of hybrid. Greenhouse and growth chamber experiments suggested that as soil pH decreased butylate injury increased, depending upon the hybrid. Butylate injury was also a differential response among hybrids, depending on temperature. Certain hybrids may be injured more at higher temperatures and other hybrids more at lower temperatures. Butylate injury to corn, therefore, appears to be due to a three-way interaction, stress x hybrid X butylate.


1997 ◽  
Vol 11 (2) ◽  
pp. 290-297 ◽  
Author(s):  
Hans De Ruiter ◽  
Andre J. M. Uffing ◽  
Esther Meinen

Field and growth chamber experiments were conducted to investigate the influence of emulsifiable mineral oil, emulsifiable rapeseed oil, and the emulsifier (polyoxyethylene C13/C15oxo alcohol) on the efficacy of phenmedipham and metoxuron against common lambsquarters, and of sethoxydim and the ethyl ester of quizalofop against winter wheat. In field studies, mineral oil and rapeseed oil were equally effective in increasing the efficacy of phenmedipham (0.24 and 0.48 kg ai/ha), metoxuron (0.6 and 1.2 kg ai/ha), and sethoxydim (0.05 and 0.1 kg ai/ha), but mineral oil was superior to rapeseed oil with quizalofop. In growth chamber studies, mineral oil and rapeseed oil were equally effective in increasing the efficacy of metoxuron, sethoxydim, and quizalofop-ethyl, but rapeseed oil was more effective than mineral oil with phenmedipham. Both in the field and in the growth chamber, the emulsifier was at least as effective as the oil adjuvants, when combined with all herbicides except sethoxydim. The herbicide doses giving 50% response (ED50) were determined for the growth chamber experiments. The adjuvants reduced the ED502.7-fold with phenmedipham, 51-fold with metoxuron, 2.7-fold with sethoxydim, and 6.8-fold with quizalofop when averaged over the three adjuvants. It was concluded that rapeseed oil (all tested herbicides except quizalofop) or the emulsifier (all tested herbicides except sethoxydim) can serve as a substitute for mineral oil.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Paul R. Viger ◽  
Charlotte V. Eberlein ◽  
E. Patrick Fuerst

The effects of the antidote CGA-154281, available soil water (ASW), and soil temperature on corn injury from preemergence applications of metolachlor were evaluated in field and growth chamber studies. In field studies, metolachlor at rates of 5.6, 8.4, and 11.2 kg ha–1caused corn injury when there was sufficient ASW before corn emergence to activate the herbicide. Injury was prevented when CGA-154281 was applied with metolachlor (30:1, metolachlor:CGA-154281 by wt). The effects of surface-soil ASW, soil temperature, and CGA-154281 on corn tolerance to metolachlor were further evaluated in growth chamber studies. Corn injury from metolachlor was more severe when the surface soil was wet for 5 days immediately after herbicide treatment than when the surface-soil was dry. Corn injury from metolachlor also was greater when corn was grown under cool temperatures (21/13 C, day/night) than when grown under warm temperatures (30/21 C, day/night). CGA-154281 conferred protection against metolachlor injury regardless of surface soil ASW or growth temperature.


Weed Science ◽  
1977 ◽  
Vol 25 (6) ◽  
pp. 482-486 ◽  
Author(s):  
J.N. Belote ◽  
T.J. Monaco

Results from greenhouse and growth chamber studies indicated that alachlor [2-chloro-2′,6-diethyl-N-(methoxymethyl) acetanilide] injury to ‘Superior’ potatoes (Solanum tuberosumL.) was related to time of herbicide application and temperature. Injury to the ‘Superior’ cultivar was observed when alachlor was applied just before potato emergence. Necrosis of shoots near the soil surface, shoot dieback, stem swelling, leaf crinkle, and plant stunting were characteristic symptoms of alachlor injury. Cool temperatures appeared to intensify the injury. ‘Superior’ potatoes outgrew injury within 41 days after treatment. Herbicide placement studies in the growth chamber suggested that alachlor or its metabolites were absorbed by the shoots of emerging ‘Superior’ potatoes. Under growth chamber conditions the ‘Katahdin’ cultivar was injured by preemergence applications of alachlor when the herbicide was applied just before plant emergence. Injury symptoms were similar to those observed on the ‘Superior’ cultivar. ‘Pungo’ and ‘Norchip’ potatoes were tolerant to preemergence applications of the herbicide regardless of time of application.


Sign in / Sign up

Export Citation Format

Share Document